盖州市 2025 年第三批次拟拍卖 2 号养殖用海 (底播) 项目

海域使用论证报告表

(公式稿)

辽宁研海生态科技有限公司 (91210703MAE5G6KX85)

二〇二五年十月

关于《盖州市 2025 年第三批次拟拍卖 2 号养殖用海(底播)项目海域使用论证报告表》全本公示删减内容及理由的说明

在此次公示中,我公司按要求删除或模糊处理其中涉及公司技术秘密、商业秘密等内容。现将删除或模糊处理内容说明如下:

- 1、删除或模糊处理环境现状监测详细数据、保留评价结果。 原因:现状调查详细数据涉及检测单位和论证单位商业利益。
- 2、模糊处理相关图件

原因: 此部分属于规划及商业秘密。

3、删除项目周边权属数据

原因:此部分属于规划秘密。

4、删除附件

原因:此部分涉及商业秘密内容。

项目基本情况表

	单位名称	盖州市	自然资源周	局 (海域出让单位)			
申请	法人代表	姓名	杨军	职务	局长		
人	联系人	姓名 张屹		职务	科长		
	通讯地址	2	辽宁省盖州市红旗大街				
	项目名称	盖州市 2025	盖州市 2025 年第三批次拟拍卖 2 号养殖用海 (底播)项目				
	项目地址	辽宁省营口盖州北部浅海海域					
	项目性质	公益性()		经营性(√)			
	用海面积	167.6820 公顷		投资金额	450 万元		
 项目	用海期限	15年		预计就业 人数	20 人		
用海		总长度	0m		750 万元		
基本情况	占用岸线	自然岸线	0m	预计拉动 区域经济			
,	口用序线 	人工岸线	0m	产值	/30 /1/4		
		其他岸线	0m				
	海域使用 类型	渔业用海中的开放式 养殖用海		新增岸线 0m			
	用海方式	面积		具体用途			
	开放式养殖	167.6820 公顷		贝类底播增养殖			

1. 项目用海基本情况

1.1. 论证工作由来

辽宁省海岸线横跨渤海、黄海,大陆岸线东起鸭绿江口,西止辽冀分界,全省大陆海岸线长度 2289.82km。海岸带-15m 以上面积 2624 万亩,相当于辽宁省耕地面积的 48.8%,是发展海洋渔业的优良场所。

盖州市位于渤海辽东湾东岸,辽东湾经济区南部,北接营口市老边区、沿海新区和大石桥市,西南靠鲅鱼圈区,南邻大连庄河市、普兰店区、瓦房店市,东与鞍山市岫岩满族自治县接壤。全市耕地面积 59 万亩,林地面积 297 万亩,农、林、牧、畜、渔各业兴旺发达,素有"北方大农业缩影"之称,更有"辽南鱼米之乡"的美誉。全市有海岸线 42 千米,滩涂、浅海总面积 5.2 万公顷,丰富的水域资源,为盖州市渔业发展提供了优越条件。

根据《自然资源部和农业农村部印发关于优化养殖用海管理的通知》(自然资办发(2023)55 号)和《关于进一步优化养殖用海有关工作的通知[辽自然资办发](2024)32 号》要求,推动养殖用海市场化配置。充分发挥市场在海域资源配置中的决定性作用,更好发挥政府作用,积极推进养殖用海市场化出让。对符合空间规划管控要求的海域,拟新设立经营性养殖用海使用权的,原则上应采取市场化方式配置。根据《中华人民共和国海域使用管理法》第二十条"海域使用权除依照本法第十九条规定的方式取得外,也可以通过招标或者拍卖的方式取得。"因此为贯彻落实省政府关于建设海洋经济强省工作部署,推进养殖用海市场化配置工作,同时也为进一步加强对盖州市水产养殖的规范化管理,合理开发利用盖州市养殖海域空间资源,盖州市自然资源局拟在《营口市国土空间总体规划(2021-2035年)》划定的"渔业用海区"内划定部分海域通过挂牌方式进行出让。

依据《中华人民共和国海域使用管理法》和《辽宁省海域使用管理办法》等 法律法规文件的要求,盖州市自然资源局委托辽宁研海生态科技有限公司承担拟 出让海域的海域使用论证工作。论证单位组织了有关专家和技术人员,进行了资 料收集、现场踏勘调查,并根据《海域使用论证技术导则》(GB/T 42361-2023) 的要求,编写了《盖州市 2025 年第三批次拟拍卖 2 号养殖用海(底播)项目海 域使用论证报告表》。

1.2. 论证依据

1.2.1.法律法规

- 1.《中华人民共和国海域使用管理法》,第九届全国人民代表大会常务委员会第二十四次会议通过,2002年1月1日起施行;
- 2.《中华人民共和国海洋环境保护法》,第十四届全国人民代表大会常务委员会第六次会议通过修改,2024年1月1日起施行;
- 3.《中华人民共和国环境保护法》,第十二届全国人民代表大会常务委员会 第八次会议通过,2015年1月1日起施行;
- 4.《中华人民共和国环境影响评价法》,第十三届全国人民代表大会常务委员会第七次会议修订,2018年12月29日;
- 5.《中华人民共和国渔业法》,第十二届全国人民代表大会常务委员会第六次会议修订,2014年3月1日起施行;
- 6.《中华人民共和国水污染防治法》,第十二届全国人民代表大会常务委员会第二十八次会议于2017年6月27日通过,自2018年1月1日起施行:
- 7.《中华人民共和国固体废物污染环境防治法》,2020年4月29日第十三届 全国人民代表大会常务委员会第十七次会议第二次修订,2020年9月1日起施行;
- 8.《中华人民共和国清洁生产促进法》,第十一届人大常委会第二十五次会 议通过,2012年7月1日起施行;
- 9.《中华人民共和国海上交通安全法》,第十三届全国人民代表大会常务委员会第二十八次会议修订,2021年9月1日起施行;
- 10. 《中华人民共和国湿地保护法》,第十三届全国人民代表大会常务委员会第三十二次会议通过,自2022年6月1日起施行;
- 11. 《中华人民共和国野生动物保护法》,第十三届全国人民代表大会常务委员会第六次会议通过修改,2018年10月26日;
- 12. 《中华人民共和国测绘法》,第十二届全国人民代表大会常务委员会第二十七次会议第二次修订,2017年4月27日。
 - 13. 《自然资源部关于进一步做好用地用海要素保障的通知》(自然资发

(2023) 89号), 2023年6月13日;

- 14.《自然资源部办公厅关于进一步做好海域使用论证报告评审工作的通知》(自然资办函[2021]2073号),2021年11月10日;
- 15.《自然资源部关于规范海域使用论证材料编制的通知》(自然资规 [2021]1号),2021年1月8日;
- 16.《自然资源部办公厅关于进一步规范项目用海监管工作的函(自然资办函(2022)640号)》,2022年4月15日;
- 17. 自然资源部办公厅关于印发《国土空间调查、规划、用途管制用地用海 分类指南》的通知,自然资发〔2023〕234号,2023年11月22日;
- 18. 自然资源部办公厅《关于依据"三区三线"划定成果报批建设项目用地用海有关事宜的函》,2022年9月28日;
- 19.《中华人民共和国防治海洋工程建设项目污染损害海洋环境管理条例》,中华人民共和国国务院令第698号,2018年3月19日实施;
- 20.《产业结构调整指导目录(2024年本)》,国家发展和改革委员会第6次委务会议审议通过,2024年2月1日起施行;
- 21. 《水产种质资源保护区管理暂行办法》,农业部令2016年第3号,2016年修正;
 - 22. 《海域使用权管理规定》, 国海发[2006]27号;
- 23.《辽宁省环境保护条例》,辽宁省第十二届人民代表大会常务委员会第三十八次会议于2017年11月30日审议通过,自2018年2月1日起施行;
- 24. 《辽宁省海洋环境保护办法》(2019年11月8日辽宁省第十三届人民政府第62次常务会议审议通过第四次修正);
 - 25. 《辽宁省海域使用管理办法》(2005年4月1日起施行,2021年4月28日);
- 26.《关于进一步加强用海要素保障促进现代海洋渔业高质量发展的通知》(征求意见稿,辽宁省自然资源厅,2023年10月):
- 27.《自然资源部办公厅 农业农村部办公厅关于优化养殖用海管理的通知》 (自然资办发〔2023〕55号);
- 28. 辽宁省自然资源厅《关于启用"三区三线"划定成果作为报批建设项目用地用海依据的通知》(辽自然资办函(2022)100号);

- 29. 《辽宁沿海经济带高质量发展规划》(2021年);
- 30. 《辽宁省"十四五"海洋生态环境保护规划》(2021年);
- 31. 《辽宁省国土空间规划(2021-2035年)》:
- 32. 《营口市国土空间总体规划(2021-2035年)》, 2024年;
- 33. 《盖州市国土空间总体规划(2021-2035年)》, 2024年;
- 34.《营口市养殖水域滩涂规划(2018-2030年)》(修订版),营口市人民政府,2024年11月。

1.2.2.标准规范

- 1.《海域使用论证技术导则》(GB/T 42361-2023);
- 2.《海域使用分类》(HY/T 123-2009);
- 3.《海水水质标准》(GB3097-1997);
- 4.《海洋沉积物质量》(GB18668-2002);
- 5.《海洋生物质量》(GB18421-2001);
- 6.《渔业水质标准》(GB11607-89);
- 7.《海籍调查规范》(HY/T124-2009);
- 8.《海洋调查规范》(GB/T12763-2007);
- 9.《海洋监测规范》(GB17378-2007);
- 10.《海洋工程地形测量规范》(GB/T 17501-2017);
- 11.《全球导航卫星系统(GNSS)测量规范》(GB/T 18314-2024);
- 12.《建设项目对海洋生物资源影响评价技术规程》(SC/T 9110-2007);
- 13.《建设项目海洋环境影响跟踪监测技术规程》(国家海洋局2002.4);
- 14.《中国地震动参数区划图》(GB18306-2015)。
- 15. 《辽宁省海洋及海岸工程海洋生物损害评估技术规范》 (DB21/T2150-2013);
 - 16.《宗海图编绘技术规范》(HY/T 251-2018)。

1.2.3. 项目技术资料

1. 委托书;

2. 建设单位提供的其他资料等。

1.3. 论证等级和范围

1.3.1. 论证等级

(1) 论证等级

本项目是盖州市 2025 年第三批次拟拍卖 2 号养殖用海(底播)项目。

根据《海域使用分类》(HY/T123-2009),本项目海域使用类型为渔业用海中的开放式养殖用海(编码:13),用海方式为开放式中的开放式养殖(编码:41)。根据《国土空间调查、规划、用途管制用地用海分类指南》,本项目属于"18 渔业用海"中的"1802 增养殖用海"。

根据《海域使用论证技术导则》(GB/T 42361-2023)对海域使用论证工作等级的划分,本项目开放式养殖用海面积为 167.6820 公顷<700 公顷,所有海域论证等级均为三级。因此,本项目的论证等级为三级。则本项目应编制海域使用论证报告表。

 一级用海方式
 二级用海方式
 用海规模
 所在海域特征
 论证等级

 开放式
 开放式养殖
 用海面积大于(含)700 ha
 所有海域
 二

 用海面积小于 700 ha
 所有海域
 三

表 1.3-1 海域使用论证等级判据(节选)

(2) 论证范围

本项目论证等级为三级,按照《海域使用论证技术导则》(GB/T 42361-2023)的要求和本项目具体情况,论证范围以项目用海外缘线为起点进行界定,三级论证向外扩展 5km,综合考虑本项目性质和周边现状,最终确定本项目论证范围为以项目所在位置为中心,向外扩展 5km 的范围。

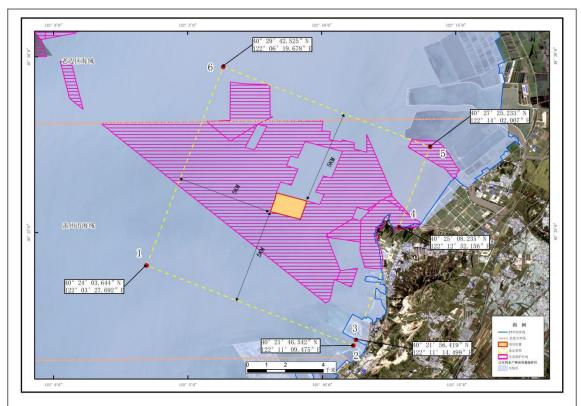


图 1.3-1 本项目论证范围图

1.4. 论证重点

本项目用海类型为渔业用海中的增养殖用海,根据《海域使用论证技术导则》 (GB/T 42361-2023)的表 C.1 海域使用论证重点参照表,确定本项目论证的重点如下:

- (1) 项目用海面积合理性分析:
- (2) 海域开发利用协调分析。

表 1.4-1 渔业用海海域使用论证重点参照表

			论证重点							
	海域使用类型		用海必要性	选址 (线) 合理性	平面 布置 合性	用海 方理 性	用海 面积 合理 性	海开利协分	资源生态影响	生用 对 措施
渔州海	增养 殖用 海	开放式养殖用海, 如筏式养殖、网箱 养殖及无人工设施 的人工投苗或自然 增殖生产等用海					A	A		

注:项目用海位于敏感海域或者项目用海对海洋资源、环境产生重大影响时,项目用海资源环境影响分析宜列为论证重点,并应依据项目用海特点和所在海域环境特征,选择水动力环

境、地形地貌与冲淤环境、水质环境、沉积物环境、生态环境中的一个或数个内容为具体的论证重点。

1.5. 项目用海基本情况

1.5.1.建设项目名称、性质及地理位置

(1) 项目名称

盖州市 2025 年第三批次拟拍卖 2 号养殖用海 (底播)项目

(2) 海域出让单位

盖州市自然资源局

(3) 项目性质

新建项目

(4) 地理位置

本项目位于营口盖州北部浅海海域。项目地理位置见图 1.5-1。

(5) 占用岸线情况

本项目不占用岸线。

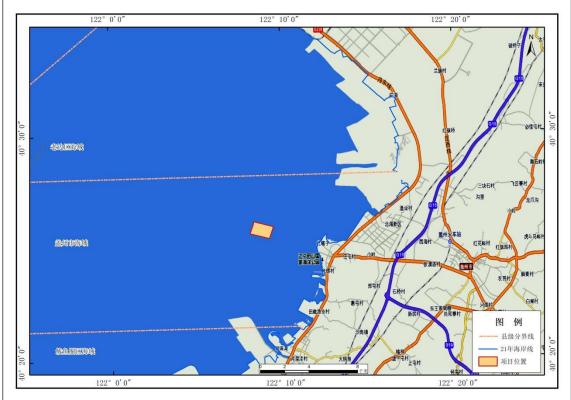


图 1.5-1 本项目地理位置图

1.5.2.项目建设内容和建设方案

1.5.2.1. 项目建设内容

拟出让海域面积 167.6820 公顷,用于贝类底播养殖。采用天然养殖模式,不投放饵料和药物,开放式底播养殖也不改变海域自然属性,不涉及围填海及构筑物等工程建设内容。项目建设能够增加该区域的底栖贝类资源,丰富区域生物多样性,增加渔业资源量,并促进地区渔业经济发展。

1.5.2.2. 养殖种类和养殖方法

(1) 养殖种类

养殖种类主要为菲律宾蛤仔,兼具文蛤、四角蛤蜊等底播贝类。

(2) 养殖方法

底播养殖。

- (3) 主要工艺
- 1) 养殖品种

养殖种类主要为菲律宾蛤仔,兼具文蛤、四角蛤蜊等底播贝类。

①菲律宾蛤仔

菲律宾蛤仔(Ruditapes philippinatum),俗称"花蛤""蚬子""蛤子",隶属软体动物门(Mollusca),瓣腮纲(Lamellibranchia)、真瓣腮目(Eulamellibranchia)、帘蛤科(Veneridae),是一种海产小型双壳贝类,在我国南北地区沿海均有分布,以辽东半岛和山东半岛居多。其个体小,却具有生活力强,适应性广,生长快、产量高、肉质嫩、味道美等特点。菲律宾蛤仔营养价值很高,除了可供食用外,我国民间早有药用的习俗。菲律宾蛤仔作为我国传统养殖四大经济贝类之一,不仅资源丰富,价格低廉,营养精致,还具有一定的抗肿瘤、提高免疫力、降脂、抗炎、抗衰老等生物学活性,且无副作用。因此菲律宾蛤仔作为绿色生物医药产品具有广泛的发展潜力。

菲律宾蛤仔的增养殖应选择远离污染源、潮流畅通、饵料丰富、水深 1m~30m 的浅海区域。海底地势平坦,底质无污染,含沙量 50%~90%。增养殖水质应符合《无公害食品 海水养殖用水水质》(NY 5052)的规定。

菲律宾蛤仔为穴居生活,涨潮时升至滩面活动,退潮后退回穴底。穴居深度 3-15cm。生长适温 5-35℃,最适为 18-30℃,上限为 43℃。适宜盐度为 19-26,蛤仔对海水比重的变化,有较强的适应能力。蛤仔在溶解氧为 1mg/L 海水里,就能正常生活。滤食性,只对食物大小有选择,食料组成以底栖硅藻为主,也食有机碎屑。洪水、台风及烈日暴晒都会引起蛤仔的死亡。

②文蛤

文蛤,隶属于软体动物门,瓣鳃纲,异齿亚纲,帘蛤目帘蛤科。地方名花蛤、黄蛤、海蛤。以其肉嫩味美、营养丰富为海中珍品,被誉为"天下第一鲜",曾为历代朝廷贡品。据分析,文蛤含有10%的蛋白,1.2%的脂肪,25%的碳水化合物以及丰富的钙、磷、铁、维生素等。贝肉除熟食外,尚可制干品或做罐头,文蛤贝壳光滑而有美丽的花纹,可作为药品或化妆品之容器,贝类粉还是畜禽饲料不可缺少的成分,使用价值极高。

文蛤在我国东部沿海有广泛的分布,尤以辽河、黄河、长江、鸭绿江入海口地区的浅海潮间带出产的产品为佳。为了满足市场需求,扩大增养殖能力,沿海资源地区积极探索人工增养殖技术并取得了关键性突破,为文蛤种苗人工养殖、天然增殖开辟了广阔的前景。

文蛤属埋栖型贝类,多分布在较平坦的河口附近沿岸内湾的潮间带,以及浅海区域的细沙和泥沙滩中。栖息深度随水温和个体大小而异。文蛤为广温性半咸水贝类,以微小的浮游(或底栖)硅藻为主要饵料。辽宁、山东文蛤的繁殖期为7-8月。

- 2) 增殖方案
- ①菲律宾蛤仔底播养殖方案
- A.苗种购置与运输

苗种购置可直接选至业主单位自有或临近区域的繁育基地。

菲律宾蛤仔在辽宁的繁育期为 6~8 月。蛤苗按季节可分为三种,一是蛤苗生长至"冬至",肉眼可见时,称冬种;二是生长至"立春"时称为春种;三是生长至"清明"前后,个体只有碎米粒大小,称为梅种。按苗种大小可以分为:砂粒苗(壳长约 24mm)、白苗(体长 0.5cm)、中苗(体长 1cm)、大苗(体长 2cm)。

短途运输:一般采用车运,亦可用船运。运输历时 24h 以内,无需采取降温

措施,用船运时,要在舱内放置竹篾编的高 70~80cm、直径 30cm 的"通气筒", 蛤苗围着通气筒倒入舱中。用汽车运输要用竹篓装苗,每篓 20kg。

长途运输:运输历时 24h 以上,需用冷藏车。苗种与冰袋交错排开,并用竹片分层相隔,控制温度 3℃左右,运营 80h~100h,成活率 95%以上。

B.苗种放养

放苗时间:一般在每年的4月~6月,当海水温度达到10℃时开始放苗。放苗前使用卫星导航仪测量拟开展养殖的海区面积,设置标记,定点定量投放。投苗时,船只行驶至设定区域内,在船舷处打开盛苗网袋,均匀投放蛤苗入海。

放苗方法:干播,多用于白苗的播种,在退潮后,将蛤苗均匀撒播,防止成堆集结。湿播,适用于中苗和大苗的播种,在潮水未退时,直接从船上把苗种播撒到海区。播种应在平潮或潮流缓慢时进行,以防蛤苗流失。

放苗密度: 苗种质量应符合《菲律宾蛤仔亲贝和苗种》(SC/T 2058-2014)的规定。

C.日常管理

在播苗后下一两个潮水及时根据实际情况进行稀疏和补苗。

蛤苗投放后,定期抽测蛤仔个体规格,检查成活率,定期监测溢油等污染物。 增养殖期间,认真做好生产记录,发现异常应立即采取相应措施。

D.收获

起捕时,蛤仔规格应符合《无公害食品 菲律宾蛤仔养殖技术规范》 (NY/T5289-2004)的规定。白苗经 1~1.5年,中苗经 0.5~1年的养成,壳长达 3cm 以上可收获。一般在繁殖季节之前进行,起捕时间为 3 月初~11 月末。可采 用船捕或人工捕捞。

具体采捕方案:根据项目区海域水深情况,项目区水深约在-5m以浅,采捕期间采用渔船拖耙的方式进行采捕。采捕时间为3月初~11月末,亩产量约500kg/a。

②文蛤底播养殖方案

A.苗种购置与运输

文蛤苗种购置时间一般宜为 4-5 月份,气温在 10-18 度左右。项目可直接选至业主单位自有或临近区域的繁育基地。

文蛤是一种耐旱性较强的贝类,冬季可耐干 2-3 周不死,但夏季也只能活 2-3 天。为此,运输过程应采用干运,但要保证一定湿度和低温,切忌带水运输。苗种可采用袋装和散装方式,每袋 20-30 公斤,一般由苗种采集至运输到目的地,时间不宜超过 36 小时。

B.种苗投放

苗种主要根据供苗情况决定,主要有壳长 1.5cm 的小苗(1316 粒/公斤),和 3cm 的大苗(167 粒/公斤)两种。小苗投放密度为每公顷 900 公斤,大苗投放密度为每公顷 2250 公斤。采用干播和湿播两种方法进行投放。湿播即涨潮时投放,干播指干潮时投放。大小苗分区投放,分区管理。

- C.养殖期管理
- a.文蛤增长规律
- 4月至5月,文蛤的摄食量较少,生长速度较慢。
- 6月至7月,水温开始升高,文蛤生长速度加快,一般到7月底达到高峰。 8月至10月,水温开始转凉,文蛤生长速度变缓。

至 11 月中旬,水温达到 10 度以下,文蛤开始停止摄食,进入越冬期。

- 一般而言,稚贝一年生长周期可长 1-1.8 厘米;两龄贝增长速度与 1 龄贝类似,可长 1.5-2.0 厘米; 3 年以上的文蛤由于达到繁殖年龄,增长速度缓慢。
 - b.文蛤的天敌

文蛤养殖区常有扁玉螺、海星、蟹类等敌害生物,特别扁玉螺和海星是文蛤的天敌,对文蛤危害较大。

c.文蛤的潜滩习性

文蛤的埋栖深度随季节变化而有所不同。一般情况,温度高,埋栖浅,温度 低,埋栖深。

d.文蛤的移动习性

文蛤可以通过分泌明胶质带而随潮流移动。

这种移动与文蛤的年龄和季节有着密切的关系。一般壳长 4-6.3 厘米的文蛤移动活跃, 3.8 厘米以下以及 6.5 厘米以上的文蛤则较少移动。移动的季节主要发生在 5 月下旬至 6 月下旬,9 月中旬至下旬两个大潮期。文蛤在移动前 3-5 天,身体部分露出滩面,并在开始移动前分泌出胶状透明带。移动时,文蛤侧伏于滩

面,但始终不离开滩面,在胶状透明带的拖动下,随水流移动,胶状透明带的悬浮高度一般为 3-8 厘米,移动速度因潮流而异,一般为每秒 0.2-0.5 米。移动终止文蛤潜入滩中,透明带消失。每次移动距离可达几十米甚至几百米。

D.捕捞

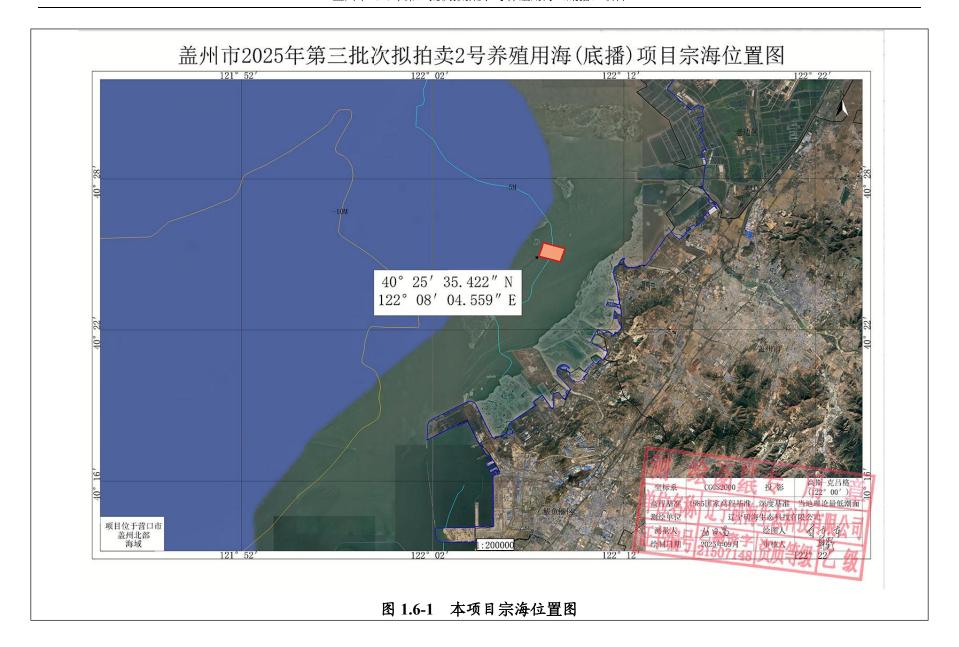
捕捞采用人工与机械结合的形式,采用人力或机械耙收为主,实行轮换采捕, 在同一区域,每年采捕不超过两次。严禁使用拍板、拖网等进行生产作业。

具体采捕方案:根据项目区海域水深情况,项目区水深约在-5m以浅,采捕期间采用渔船拖耙的方式进行采捕。采捕时间一般在春、秋两季,亩产量约500~700kg/a。

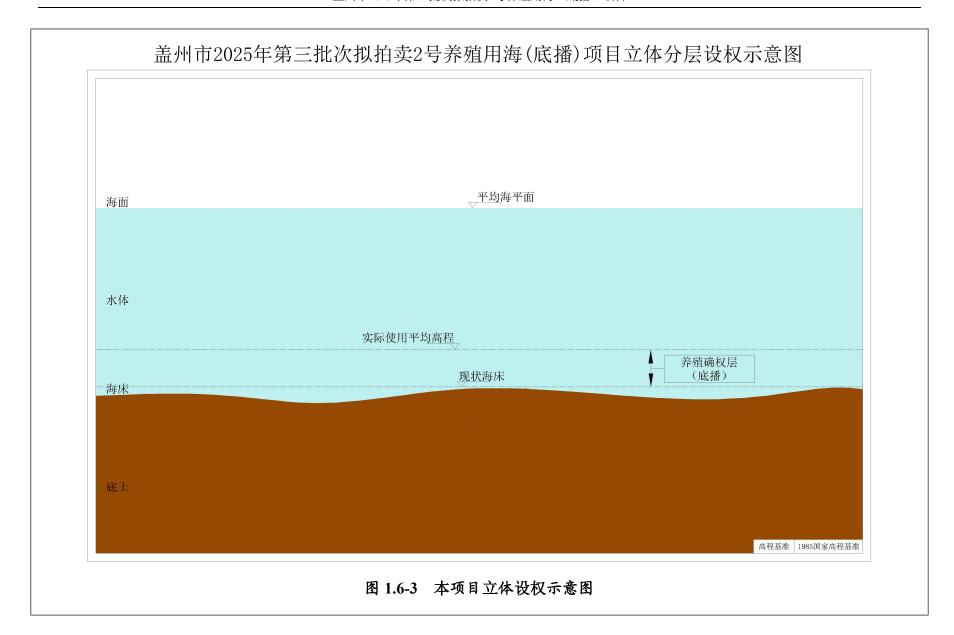
1.6. 项目用海需求

申请用海面积:本项目拟出让海域面积 167.6820 公顷。

申请用海类型: 渔业用海中的开放式养殖用海(编码: 13)


申请用海方式:开放式中的开放式养殖(编码:41)。

项目用海空间层位:海床。


申请用海期限:本项目申请用海期限为15年。

占用岸线情况:本项目不占用岸线。

项目用海宗海位置图、界址图见图 1.6-1、图 1.6-2、立体设权示意图见图 1.6-3。

1.7. 项目用海必要性

1.7.1.项目建设必要性

1.7.1.1. 项目建设符合国家产业政策

在《产业结构调整指导目录(2024年本)》中,本项目的建设属于"鼓励类" 第一条"农林牧渔业"中的:"14. 现代畜牧业及水产生态健康养殖:畜禽标准化规模养殖技术开发与应用,农牧渔产品绿色生产技术开发与应用,畜禽养殖废弃物处理和资源化利用(畜禽粪污肥料化、能源化、基料化和垫料化利用,病死畜禽无害化处理),远洋渔业、人工鱼礁、渔政渔港工程、绿色环保功能性渔具示范与应用,新能源渔船,淡水与海水健康养殖及产品深加工,淡水与海水渔业资源增殖与保护,海洋牧场"。

项目属于产业政策中的鼓励类产业类型。因此,本项目建设符合产业政策的 要求。

1.7.1.2. 与相关涉海规划的符合性

(1) 《辽宁沿海经济带高质量发展规划》符合性分析

2021年4月《辽宁沿海经济带高质量发展规划》提出: "大力发展海洋经济 充分利用海洋资源优势,推动海洋传统产业转型升级,加快海洋新兴产业扩能升级,促进海洋服务业提质升级,构建现代海洋产业体系。发展精品水产养殖、深海智能网箱养殖,建设一批海洋牧场,推进长海、庄河等地区开展海洋牧场示范区建设,扶持发展可持续远洋渔业,发展海洋水产品精深加工。"

本项目发展绿色健康的开放式底播养殖,采取生态养殖模式,有利于促进水产养殖业向优质、健康、高效、生态、集约化方向发展,属于盖州市海洋产业中的支柱产业之一,有利于增强地区海洋经济可持续发展能力。因此项目建设是符合《辽宁省沿海经济带高质量发展规划》要求的。

(2)与《辽宁省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》(2021年)符合性分析

《辽宁省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲

要》(2021年)提出"建设海洋强省.坚持陆海统筹、经略海洋,大力发展海洋经济.壮大传统优势产业,发展海洋生物医药、海洋新材料、海洋清洁能源等新兴产业.培育现代海洋渔业,发展精品水产养殖,加快海洋牧场示范区建设,推进"现代海洋牧场"计划。扶持远洋渔业,培育建设高端远洋渔业产业基地。大力发展海洋旅游业和涉海金融、保险服务、海洋信息服务业,推进智慧海洋工程.积极培育涉海总部经济.实施海洋科技创新引领工程,促进科创要素向海洋产业集聚.科学统筹海岸带、近海海域、深海海域等海洋保护开发带,合理开发利用海洋资源,推进美丽海湾建设,建成一批集中集约用海区、海洋产业集聚区和滨海经济区。"

本项目拟进行开放式底播养殖,旨在发展精品水产养殖,有利于推进现代海 洋渔业的发展。项目建设符合《辽宁省国民经济和社会发展第十四个五年规划和 二〇三五年远景目标纲要》提出的相关内容要求。

(3)与《盖州市国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》的符合性分析

《盖州国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提出: "盖州是辽中南城市群和沈大发展轴线上的重要节点城市,是辽宁沿海经济带重要节点城市。"十四五"时期,依托区位优势及资源禀赋,将盖州市打造成为"国家级海洋牧场示范区、辽宁沿海经济带重要产业基地、辽中南城市群文化旅游名城、生态宜居区域性中心城市"……依托沿海资源优势,完善浅滩生态系统、人工鱼礁育苗、成鱼繁殖配置等海洋牧场设施,积极推进海上风电和海洋牧场融合发展,坚持高起点、高标准推动海洋牧场生态化、专业化、智能化建设,延伸产业链条,打造海上田园综合体。发展精品渔业。进一步优化品种结构,大力推广复合渔业,实现鱼、虾、蟹、贝、蜇多营养层级海水池塘立体生态养殖,推广稻渔综合种养,积极推广深水抗风浪网箱养殖。"

本项目拟进行天然底播养殖,有利于盖州市海水养殖业的发展和推进海洋牧场建设。项目建设符合《盖州市国民经济和社会发展第十四个五年规划和2035年远景目标纲要》相关要求。

(4) 与《辽宁省"十四五"海洋经济发展规划》符合性分析

《辽宁省"十四五"海洋经济发展规划》提出,"十四五"期间,围绕海洋强省建设,综合考虑我省海洋经济发展基础和潜力,努力打造成为东北地区全面

振兴"蓝色引擎"、我国重要的"蓝色粮仓"、全国领先的船舶与海工装备产业基地、东北亚海洋经济开放合作高地。

严格执行海洋伏季休渔制度,取缔对渔业资源破坏大的渔具和作业方式,逐步压减捕捞强度,引导渔民转产转业,促进海洋渔业资源的可持续开发利用。实施"蓝色粮仓"工程。推广生态、安全、高效、节约的海水健康养殖模式,建设北黄海(辽宁)国家水产养殖绿色发展示范区。促进碳汇渔业发展,支持规模化、立体化、智能化养殖。

项目拟通过开放式底播养殖,结合苗种检疫、生态养殖模式、控制捕捞强度等全过程科学管理措施,有利于促进海洋渔业资源的可持续开发利用,实现区域养殖规模化发展,从而为实现"蓝色粮仓"提供动力。因此,项目建设符合《辽宁省"十四五"海洋经济发展规划》相关要求。

(5) 与《辽宁省"十四五"生态经济发展规划》符合性分析

《辽宁省"十四五"生态经济发展规划》提出,海洋渔业:严格执行海洋 渔业伏季休渔制度,逐步压减渔船数量和功率总数,控制近海捕捞强度,引导渔 民转产转业。开辟远洋渔业可持续发展新空间,参与以南极磷虾渔业为代表的全 球渔业资源开发,培育建设高端远洋渔业产业基地。支持规模化、立体化、智能 化养殖,推进贝壳等养殖生产副产物资源化利用,进一步挖掘辽参、锦州毛蚶、 营口海蜇、大连鲍、大连蚝、大连裙带菜、丹东黄蚬子、东港梭子蟹、东港杂色 蛤等品牌价值……

"蓝色粮仓"工程。

- (1)现代海洋牧场建设。加快海洋牧场示范区,形成鸭绿江口海域、长山群岛海域、辽东半岛西部海域、**辽东湾北部海域**和辽西海域等大海洋牧场核心片区。
- (2) 渔港经济区。建设重点渔港30座左右,整合现有小散和不规范渔港, 腾退恢复自然岸线,推动海洋渔业与休闲旅游、海洋康养等融合发展。

项目通过开放式底播养殖,有利于提高海洋碳汇,创造海洋渔业经济,恢复区域渔业资源,实现区域增养殖的规模化发展,从而为实现"蓝色粮仓"提供动力。因此,项目建设符合《辽宁省"十四五"生态经济发展规划》相关要求。

(6) 与《辽宁省"十四五"海洋生态环境保护规划》的符合性分析

根据《辽宁省"十四五"海洋生态环境保护规划》,总体布局为"根据辽宁省沿海区域资源环境禀赋、海域生态功能属性和海洋生态环境问题,统筹辽宁沿海经济带发展布局和黄渤海生物多样性优先区域,深入实施"辽东湾"综合治理,巩固提升治理成效;重点保护"辽西沿岸"砂质海岸线,提升亲海空间品质;重点保护"辽河口鸭绿江口"河口湿地,维护典型滨海湿地生境;重点强化"辽东半岛沿岸"海洋环境风险管控,着力提升应对海洋环境突发事件能力;重点养护"黄海北部"渔业资源,打造国家级海洋牧场示范区。"

规划任务为"以"美丽海湾"建设为统领,深入推进近岸海域污染防治,实施海洋生态保护与修复,养护渔业资源,改善亲海空间品质,完善海洋治理体系,创新海洋治理模式,提升海洋环境风险防控能力。"

本次为开放式养殖用海,不涉及围填海等工程建设内容,不改变海域自然属性。根据本项目的环境影响分析,本项目建设对周边海洋环境影响较小。同时,项目通过底播增养殖,通过确权管理,控制周边渔民传统捕捞业对渔业资源的掠夺性采捕,能够有效恢复区域渔业生物资源量,养护区域底质环境,从而促进渔业资源的恢复,有利于养护渔业资源。综上,本项目建设符合《辽宁省"十四五"海洋生态环境保护规划》相关要求。

(7) 与《辽宁省"十四五"渔业发展规划》符合性分析

根据《辽宁省"十四五"渔业发展规划》提出: "严格养殖水域滩涂规划制度。统筹全省渔业生产和环境保护,依法推进全省养殖水域滩涂规划,科学划定禁止养殖区、限制养殖区和养殖区。依照《水域滩涂养殖发证登记办法》,严格规范养殖证发放制度,确保水域滩涂养殖权长期稳定,切实维护渔民合法权益,加强养殖执法检查,依法查处全民所有水域内无水域滩涂养殖证从事养殖生产等违法行为,为水产养殖业规范发展提供保障。

- (三)做大做强辽宁优势特色产业 立足海参、蛤、扇贝、牡蛎、海蜇、鲜鲽、对虾、河蟹、鲑鳟、优质淡水鱼等十大优势特色主导品种品类,以市场为导向,以科技为支撑,以产业融合为引领,因地制宜、因类施策、突出特色、发挥优势,做大做强辽宁优势特色产业。
- 3. 蛤。包括**菲律宾蛤、文蛤**、中国蛤蜊、四角蛤蜊等品种。在沿海 6 市开展 滩涂管养和浅海底播增殖,加强技术研发与集成示范,大力推进菲律宾蛤仔苗种

本地化进程,全面提高越冬成活率。不断增加中国蛤蜊增殖规模,适度扩大浅海底播增养殖规模,实施滩涂精细化和田园式管理,提高单产水平。加大蛤精深加工技术研发,增加精深加工品种和产品,不断扩大活蛤和加工产品出口。到 2025年,全省蛤产量 150 万吨,产品产值 120 亿元,全产业链产值实现 200 亿元。"

本项目在营口盖州市南部海域开展贝类底播增养殖,符合辽宁"十四五"渔业发展重点任务要求,有利于辽宁优势特色产业的做大做强。因此,项目建设符合《辽宁省"十四五"渔业发展规划》相关要求。

1.7.1.3. 项目建设必要性

(1)项目建设符合国家海洋产业相关政策,有利于促进地区海洋经济发展水产养殖产业一直是国家重点支持和扶持的产业,是实现渔业经济转型升级,替代压减渔业资源捕捞的重要手段。从前述区域发展和产业发展规划来看,《辽宁省"十四五"海洋经济发展规划》《辽宁省"十四五"生态经济发展规划》及《辽宁省"十四五"渔业发展规划》等规划中均提出要发展海水健康养殖模式,支持规模化养殖,做大做强辽宁优势特色产业等。

本项目位于营口盖州市北部浅海海域,拟开展贝类底播增养殖,是落实相关 海洋生态经济与渔业产业发展政策,做大做强辽宁优势特色产业,促进地区海洋 渔业经济发展的需要。

(2) 项目建设是满足市场需求

药用价值的底栖性贝类的需求逐年大幅增长,从而被动的形成了连续多年的掠夺性采捕,致使贝类资源锐减,几近枯竭。供需矛盾日益突出。市场价格上扬,但市场供应缺口仍较大,并有逐年增大趋势。为满足日益增长的市场需求,投资建设底栖性贝类增养殖项目,弥补自然资源的严重不足,又可以获取可观的经济效益。

随着我国居民生活水平的不断提升致使消费结构不断优化和改善,水产品在膳食结构中的比重不断增加,需求的持续增长推动我国水产品总产量的不断提升。据资料显示,2020年我国水产品总产量为6549.02万吨,同比2019年增长1.06%。

同时,我国还是最大的贝类出口国之一,近30年来,中国、日本、美国和

韩国在世界海水贝类产业中占据绝对主导的地位,其中中国因素发挥了越来越显著的作用。从海水贝类生产方面看,中国在总产量方面占据绝对优势,我国贝类年产量占世界总产量的60%以上。

项目市场化出让后开展贝类底播增养殖,能够稳定区域贝类产量,是满足贝类消费市场的需要。

(3) 项目建设具有良好的社会和经济效益

项目申请用海面积 167.6820 公顷,开展贝类底播养殖,根据周边同类项目养殖经验,项目投产后预计贝类年产量可达 57t,预计可实现年产值 750 万元,有利于促进地方海洋渔业经济产值的提高。同时,项目实施后需要依靠一定的船舶和劳动力开展投苗、捕捞、运输、销售等工作,预计可提供 5 人就业岗位,带动周边渔民就业增产,提高渔民群众幸福感和安全感,具有一定社会效益。

(4) 项目建设是增加海洋碳汇的需要

2015年9月22日中共中央、国务院印发的《生态文明体制改革总体方案》中提出,逐步建立全国碳排放总量控制制度和分解落实机制,建立增加森林、草原、湿地、海洋碳汇的有效机制,深化碳排放权交易试点,逐步建立全国碳排放权交易市场。

贝类通过 2 种促进生长的方式使用碳元素。一种是利用 HCO₃·形成 CaCO₃ 贝壳,海水中的碳酸钙贝壳仅有很少一部分从表层海水垂直输送到深海,绝大部分从海水中收获移出;另一种方式是通过滤食摄取悬浮颗粒有机碳(包括浮游植物和颗粒有机碎屑等),促进贝类个体软组织的生长。大规模的贝类养殖活动对水体中悬浮颗粒有机碳的数量以及组成具有一定的调控作用。贝类是生物泵中固碳可应用性较强的一个环节,资料表明,滤食性贝类的软组织中含碳通常为软组织干重的 44%,贝壳中含碳为贝壳干重的 12%。

项目市场化出让后开展贝类生态增养殖,可使贝类充分发挥海洋生物固碳、 汇碳的功能,实现碳的汇集、储存和固定。在增加固碳的同时,调节海洋生物食物链,达到海洋生物资源充分合理利用,使沿海渔民增收、渔业增产、为社会提供更多的优质蛋白。通过大力发展海洋增养殖生物固碳、汇碳措施,开展生态养殖,能够在提高经济效益的同时,实现海洋清洁生产。

(5) 项目建设是养殖用海市场化发展的体现

养殖用海是传统的海域开发利用活动,对保障广大渔民生产生活、促进沿海地区经济社会发展具有重要作用,但传统的养殖用海也存在着如养殖用海布局不合理,养殖用海不规范,违法用海等问题。因此政府部门通过国土空间规划、养殖水域滩涂规划等,划定增养殖区,科学确定养殖用海规模,拓展深水远岸宜渔海域,优化养殖用海布局,并通过将宜渔海域进行市场化配置,让海洋资源资产化,从根源上避免养殖用海超规、无序、布局不合理等问题,推动海上养殖合法化、规范化发展,营造健康发展的海域使用环境。本项目的实施是政府推动养殖用海市场化发展的体现,促进现代海洋渔业高质量发展,项目实施是必要的。

(6) 项目建设是盖州市水产养殖业可持续发展的需要

水产养殖作为海洋经济的重要组成部分,已成为调整各国农业产业结构、振 兴地方经济、增加渔民收入的重要产业。盖州市水产养殖是当地渔业村重要经济 来源,亦是盖州市海洋经济发展的重要一环。本项目的实施能够满足盖州市水产 养殖业发展的需求,促进盖州市水产养殖业的可持续发展。

为保障海洋与渔业经济的可持续、健康发展,必须改变传统的以捕捞为主的 粗放型增长模式,科学养护与合理利用相结合,健康养殖、生态养殖是实现渔业 可持续发展的有效途径。采用不投饵、不用药的养殖方式,保障了生物在自然环 境中自然生长,并充分利用海水的自净能力,保证了养殖生物的安全和质量,能 够有效防止病害发生。

项目选址根据海区自然环境与涨落潮、海流变化等布局养殖区域与养殖品种,满足养殖用海主体对养殖空间的需求。本项目充分利用其自然环境本底条件,促进开放式养殖业持续稳步发展。因此,本项目的建设是必要的。

1.7.2.项目用海必要性

(1) 从科学利用海洋资源、保护生态环境来看

本项目选址海域属于海陆相互作用强烈的区域,沿岸多条河流注入,不断输送各种营养物质入海,为海洋生物的繁衍提供了丰富的食物。因此,该海区也成为了海洋经济动植物的繁殖地和栖息地。丰富的生物和水产资源,成为了人工增养殖的优良场所。

项目通过市场化出让后通过开展科学的底播增殖,制定有效的管理措施,杜

绝过度投放和采捕,通过市场投资、市场运作、政府监管的模式,能够更好地保护和恢复区域生态环境和生物资源,改善海洋生态环境条件、促进海洋生物多样性和资源量的提升,建立起协调的生态保护与资源合理利用关系,促进环渤海区域海洋生态文明建设和社会经济持续发展,是科学利用海洋资源的体现。

(2) 从项目用海需求来看

本项目出让后拟进行开放式底播养殖,养殖品种主要为菲律宾蛤仔,可兼具文蛤、四角蛤蜊等贝类。

根据《菲律宾蛤仔浅海底播增殖技术规范》(DB21/T3135-2019): "项目底播增殖选址海区应为远离污染源、潮流畅通,饵料丰富,水深 1m~30m 的浅海区域。海底地势平坦,底质无污染,含沙量 50%~90%。"

项目开展贝类底播需申请一定面积的海域,选址位于浅海海域,潮流通畅, 地势平坦、沿岸有多条河流汇入,饵料丰富,水深约在-5m左右,底质类型为砂-粉砂-粘土,适宜菲律宾蛤仔等贝类增养殖。

综上,项目用海是必要的。

2. 项目所在海域概况

2.1. 海洋资源概况

项目所在的营口海域分布的海洋资源有岸线资源、港口资源、海洋渔业资源 及旅游和景观资源等。

2.1.1.岸线资源

营口市大陆岸线长度 165.36km, 其中, 自然岸线长度 21.11 km, 人工岸线长度 119.51 km, 其他岸线长度 24.74 km。

营口地区海岸线主要由淤泥质平原海岸、砂质海岸和基岩海岸三种类型组成。其中,淤泥质海岸主要分布在大辽河入海口和西海之间,砂质海岸主要分布在沙河河口、熊岳河口和浮渡河口,基岩海岸主要分布在西崴子、鲅鱼圈、仙人岛。

2.1.2. 港口资源

营口地区现有宜港岸线 16.0km, 其中深水岸线占 44%, 其他岸线占 56%, 建有营口港鲅鱼圈港区、仙人岛港区和望海寨渔港、光辉渔港、田家崴子渔港等, 分别占用岸线 8.8km、4.6km、1.0 km、1.25 km 和 0.6 km。

(1) 鲅鱼圈港区

宜港岸线北起台子山(韭菜坨子),南至红河河口,长约 8.8 km,其中韭菜坨子南至盐厂为 3km 基岩海岸,5m 等深线距岸 100~500m。港区水域宽阔,港池自然水深 4~7 m。港池内基岩埋深较大,在 5 m 等深线附近基岩埋深在 15 m 以下。7m 等深线附近基岩埋深在 20 m 以下。地质为泥或泥沙,易开挖建深水泊位。盐厂至红河河口为熊岳河河口冲积平原海岸,长约 4.5 km,该段水域水深虽比北段小(5m 等深线距岸 3~5 km),但易开挖,陆域平坦宽阔,可作港口发展岸线。不利因素是近岸海域的固定冰。但因港池挖深并有防波堤保护,港区可实现全年作业。

(2) 仙人岛港区

宜港岸线 4.6km, 其中西侧和北侧水深较好。西侧 5m 水深距岸仅 200~300 m,

北侧 2m 水深距岸 5m。近岸水域底质为砂和泥。仙人岛为陆连岛,由大片砂堆积体与陆地相连,呈向西凸出于海的岬角。岬角区南北宽约 1km,东西长约 2km,临海为陡坡,平均高差 10m,后方陆域平坦宽阔。

(3) 渔港

根据《辽宁省沿海渔港布局规划》(2023 年调整后),营口市有渔港 8 座,包括盖州三孝(光辉)渔港(一级渔港)、望海(珍珠湾)渔港(一级渔港)、田崴北渔港(未评价)、京东渔港(三级渔港)、四道沟渔港(三级渔港)、白沙湾渔港(二级渔港)、西河口渔港(三级渔港)和仙人岛渔港(三级渔港)。

盖州光辉渔港: 位于盖州市团山镇光辉屯,岸线长 1.02km,海域宽 1.7km,面积 1.20km²,水深 2.0m,距岸 1500m,可停泊渔船 400 条。防波堤兼码头总长 200m,另有避风锚地 2 万 m²,拟建成吞吐量为 10 万 t 级,以及 1 个 1000t 冷库船码头、7 个渔码头、2 个上冰码头、5 个物资码头,计 15 个泊位。

2.1.3. 渔业资源

(1) 捕捞业

辽东湾的渔业资源基本都在沿岸 20km 以外的海域,初级生产力较高。历史上为多种海洋经济生物栖息繁殖和生长的场所,传统捕获的渔业品种为中国毛虾、鲈鱼、小黄鱼、青鳞鱼、梭鱼和鲅鱼等;此外,海蜇、文蛤、四角蛤蜊、沙蚬子等资源也比较丰富。近年来,捕获量很少,需要到远海才能捕捞到。

(2) 增养殖业

营口沿海海洋生物资源开发利用程度较低,以海水养殖为主。滩涂和浅海养殖占用岸线长约 34.4km,占全市海岸线长的 35.65%,已开发利用面积占全市 5m 等深线水域及滩涂总面积 483.2km²的 78.09%。浅海筏式养殖用海仅 29.92ha,集中在盖州市九龙地镇仙人岛海域。

2022 年营口市全年水产品产量(不含远洋渔业)51.4 万吨,同比增长2.7%。 其中,海洋捕捞3.8 万吨,海水养殖34.0 万吨,淡水养殖13.6 万吨。

2.1.4. 旅游和景观资源

营口地区有海蚀景观、滨海浴场和人文景观三大旅游和景观资源。

- (1)海蚀景观:主要分布在盖州市境内,盖州角、台子山、仙人岛等岬角, 崖壁垂挂、礁石嶙峋风光旖旎,盖平角岩石风光国内罕见。
- (2) 滨海浴场:营口现有 5 处滨海浴场,占有岸线 8.7km,4 个旅游度假区,2 个滨海公园,1 个省级森林公园,1 处滨海疗养院。从月牙湾到白沙湾,沙滩延绵,海滩宽阔,砂质纯净,海水清澈,沿岸林木茂盛,环境优雅,堪称辽南最大的海水浴场。
- (3)人文景观:营口市沿海地区有许多明代遗留的历史文物,封建社会的历史遗迹、宗教文化等人文景观资源丰富。全市现有省级文物保护单位5处,市级10处。

2.2. 海洋生态概况

2.2.1. 气候与气象

本项目位于营口市盖州市附近海域,距离最近的海洋站为鲅鱼圈海洋站,根据鲅鱼圈海洋站(韭菜驼子,下同)2010~2014年的资料统计,项目所处区域的气象特征统计如下:

(1) 气温

年平均气温:

年极端最高气温 (出现在2013年7月4日);

年极端最低气温 (出现在2011年1月16日)。

(2) 降水

年最大降水量: ;

年最小降水量: ;

年平均降水量: ;

一日最大降水量:。

(3) 风况

该区常风向为 S 向,频率为 14.51%,次常风向为 NE 向,频率为 13.93%,强风向为 SSW 向,该向 \geq 6 级风出现频率为 0.57%,该向 \geq 7 级风出现频率为 0.05%。全年 \geq 6 级风出现频率为 2.03%,全年 \geq 7 级风出现频率为 0.22%。详见风频率统计表 2.2.1-1 和风玫瑰图 2.2.1-1。

表 2.2.1-1 风况统计表(2010~2014 年)					

图 2.2.1-1 风玫瑰图

(4) 雾况

近 5 年中的最大能见度为 40.0km,最小能见度为 0.1km,平均能见度为 25.0km,平均年夜间有雾累计天数为 2.8 天。

(5) 相对湿度

年平均相对湿度 65.6%。7、8 月份湿度在 79~81%, 4 月份最小, 在 54% 左右。

2.2.2.海洋水文

(1) 潮汐及潮位

本报告书采用鲅鱼圈海洋站 1984~2003 年的统计资料。

1) 基准面及换算关系

图 2.2.2-1 基面换算关系

2) 潮汐

盖州市海域暂无潮位观测资料,根据鲅鱼圈海洋站观测资料统计,本地区属于不规则半日潮,潮汐型态系数($H_{k1}+H_{o1}$)/ $H_{m2}=0.52$ 。

3)潮位特征值

根据 1984~2003 年韭菜坨子实测潮位资料统计: (从鲅鱼圈理论最低潮面起算)

历年最高潮位:(1994.8.4)

历年最低潮位: (1995.12.25)

平均海平面:

历年平均高潮位:

历年平均低潮位:

历年平均潮差:

历年最大潮差:

(2) 波浪

营口地区地形和水域开阔,沿岸的波浪以风浪为主,涌浪甚小。因受风的控制,浪向随季节变化明显。据沿岸各波浪观测资料统计:春季冬季多偏北向浪,春季的浪向分布杂乱。夏季多偏南向浪,涌浪较少。秋季多偏南向浪,秋末多为偏北向浪。营口地区常浪向为 SW 向,强浪向为 N 或 NNE。据鲅鱼圈沿岸多年逐月平均波浪要素统计,其平均波高介于 0.2~0.6m 之间,较大值出现在 11 月份,为 2.6m,最大波高出现在 4 月份,为 2.7m。波高频率 1.5m 以上的仅占 1%。从波型来看,明显以风浪为主,涌波甚微且为当地风成涌。风浪与涌浪出现频率之比为 1: 0.05。风浪主要来自两个方面,其一为西南,其二为北偏东。N 及 NNE为强浪向,SW 及 WSW 向为常浪向。夏季沿岸波浪较小,秋季较冬季小,但比春季稍大些。

图 2.2.2-2 波高玫瑰图

(3)海流

根据位于盘锦-营口海域的海流观测数据,观测时间选择在 2019 年 4 月 20 日至 2019 年 4 月 21 日大潮期间(农历三月十六至十七)对布设的 6 个站进行同步海流周日连续定点观测(站位见图 2.2.2-3 和表 2.2.2-1)。

表 2.2.2-1 海流观测站位坐标

海流观测结果:

1)本海区为正规半日潮流,为两涨两落,强度大致相同。潮流呈现明显的往复流特征,且落潮历时大于涨潮历时,落潮时刻的平均流速小于涨潮时刻平均流速。

另外各站潮流具有较明显的驻波特征。高潮和低潮时是转流时间,半潮面时则出现最大潮流流速。

- 2) 施测海域潮流主要呈现往复流特征,其中 S1 站实测潮流介于往复流和旋转流特征之间,S2~S6 站潮流为明显往复流特征,其涨、落潮流的主流向走向与施测海域地形走向基本一致。S2、S3、S6 站涨、落潮潮流流向大致呈 NE—SW 向,S4 和 S5 站涨、落潮潮流流向大致呈 NNE—WSW 向。
- 3)水文测验期间大潮涨潮最大流速为 108cm/s,流向为 62°,出现在 S1 站涨潮段的表层,落潮最大流速为 88cm/s,流向为 228°,出现在 S6 测站的表层。总体看来,各站大潮期涨潮流速最大值大于落潮流速最大值。
- 4)各站的涨、落潮流流速随深度增加而有所减小。一般表层流速最大,中层次之,底层流速最小。
- 5) S5 站表层余流最大(流速 8.1cm/s、流向 SW), S1、S2 和 S6 站余流流向多集中于 S~SSE 向外, 其余三站余流流向多集中于 W~NW 向。

2.2.3. 地形地貌

(1) 地形地貌特征

辽东湾位于渤海的最北部,其西南部与渤海中部的开阔海域相连,其他两面为冀辽沿海海域,海湾形似倒"U"字,被辽宁省的大连、营口、盘锦、锦州、绥中,河北省秦皇岛等沿岸所怀抱,是渤海中最大的海湾,其面积约为3万km²。其海底地形轮廓也和海湾的形态类似。海底地形明显受海湾形态及陆上地形特征的影响,如陆上平原区附近的海域,海底地形平坦开阔,为陆上地形的自然延伸;而在山地附近的海域,则可见明显的起伏。

辽东湾海底地形复杂,根据海底起伏情况,将辽东湾分为 5 个区,即辽东湾西北部地形区 I、辽东湾中西部地形区 II、辽东湾西南部地形区 III、辽东湾东部地形区 IV。本项目为位于辽东湾东部地形区 IV。

辽东湾东部地形区 IV: 位于旅顺口区以北、辽河口以东的辽东湾东部沿海狭长海域。该区分布有众多岛屿和海湾。从地形图上看,该海域总体上呈现出一系列与岸线接近平行的谷-脊相间地形形态,与辽东湾中西部海底形态类似,但起伏幅度明显大于后者。其原因是,末次盛冰期期间,整个渤海出露成陆,辽东湾也不例外,以辽河为主的古河系流经该处海域,全新世海侵之后,海底仍遗留下一些古河谷的遗存,这些古河谷又成了辽东湾的主要潮流通道,形成潮流冲刷槽和潮流沙脊相间分布的地形形态。

本项目位于地形区 IV 内,该区域地形较为平坦,等深线走向与湾底轮廓线基本一致,说明该海域地形地貌较为稳定,该区域受辽河等古河谷的遗存形成的潮流通道影响,呈现潮流冲刷槽和潮流沙脊相间分布的地形形态,近些年由于营口港航道疏浚的影响,局部区域的等深线变化较大,但由于外源泥沙的减少,潮流影响下的深槽-沙脊地形相对稳定。

(2) 底质

营口市海域地质类型包括砾质砂、粉砂、粉砂质砂、砂、砂质粉砂、粉砂质 黏土和砂质砾。砂质粉砂为主要底质类型,分布在营口市北部海域,砂集中分布 在南部海域。

项目区位于营口盖州市南部海域,底质类型以砂-粉砂-粘土为主,适宜开展菲律宾蛤仔、文蛤等增养殖。

2.2.4. 海洋灾害

(1) 寒潮

寒潮是一种大型天气过程,会造成沿途大范围的剧烈降温、大风和风雪天气,由寒潮引发的大风、霜冻、雪灾、雨凇等灾害对农业、交通、电力、航海,以及人们健康都有很大的影响。根据《辽宁省 2020 年气象灾害公报》,2020 年,辽宁省共发生寒潮 13 次,与 2019 年持平。上半年发生 5 次,下半年发生 8 次,其中 11 月发生 4 次。8 次寒潮发生在沈阳、鞍山、抚顺、本溪、营口、辽阳、铁

岭和朝阳地区。11月7日至11日,全省出现了年度最强的寒潮过程,53个国家 气象站达到寒潮标准,过程平均降温幅度14.0℃。

根据营口市气象台 2021 年冬季气候趋势预测: 营口地区 2021 年冬季平均气温较常年同期偏低,气温季节内波动较大,阶段性特征变化明显,前东气温略高,后东气温偏低。冬季平均降水量较常年同期偏多。冷空气活动频繁,可能出现范围广,持续时间长的极端低温、强寒潮、暴风雪等高影响灾害天气过程。

(2) 台风

根据 1884~1896 年、1899~1980 年资料统计,影响辽宁省的台风和热带气旋共计 91 次。影响营口海域的台风平均每年一次,其中以 1930 年及 1962 年最多,年均达 4 次。有的年份无台风影响,近 10 年无台风过境。历史上,1972 年 3 号台风在塘沽附近登陆,致使营口增水达 177cm;1985 年 9 号台风在营口登陆。影响本地区的台风,来源于热带西太平洋上,台风进入东中国海后,主要有三条路径:第一条在华东登陆,向北移动,经山东进入河北,逐渐减弱,对营口地区影响不大。若经渤海登陆,营口海域可产生 6~9 级、最大 12 级大风,并有较大范围和持续时间较长的大暴雨或特大暴雨。第二条从海上直抵辽东半岛,天气十分剧烈。营口海域可产生 8-10 级、最大 12 级大风。台风经过时,可产生大雨或暴雨,有时有特大暴雨。第三条在长江下游登陆,向东北方向移动,经东海、黄海达朝鲜半岛北部,此类台风次数最多,约占辽宁省台风的 50%,对营口市无大影响,可产生中等降水。

(3)海冰

营口地区所处位置是我国每年冬季结冰较重的海区。依据《中国海洋灾害公报》(海冰部分)资料,鲅鱼圈港及其附近海域常年初冰日开始于 11 月 18 日前后,终冰日约为翌年的 3 月 22 日,结冰期 126 天左右。

该海域通常在12月中下旬进入盛冰期,固定冰区宽度在5海里左右,流冰外缘线通常在8海里~10海里左右,最远可达20海里以外,冰区外缘的流冰大多由辽河漂来的流冰块组成。

根据《2023年中国海洋灾害公报》,2022/2023年冬季,辽东湾海冰最大分布面积13283平方千米,出现在2023年1月24日;浮冰外缘线离岸最大距离59海里,出现在2023年2月8日。与近十年相比,2022/2023年冬季海冰的初

冰日偏早,终冰日偏早,冰期持平,最大分布面积出现时间偏早。辽东湾海冰最大分布面积与平均值(13193平方千米)基本持平。

图 2.2.4-1 2023 年 1 月 25 日渤海及黄海北部海冰分布图

(5) 地震

营口处于郯城-营口地震带上,包括从宿迁至铁岭的辽宁、河北、山东、江苏、营口等省市的大部或部分地区。是我国东部大陆区一条强烈地震活动带。1668年山东郯城 8.5 级地震、1969年渤海 7.4 级地震、1975年2月4日海城 7.3 级地震就发生在这个地震带上,据记载,本带共发生 4.7 级以上地震 60 余次。其中7-7.9 级地震 6次; 8级以上地震 1次。

2.2.5.海洋环境质量现状

本次论证引用天津中环天元环境检测技术服务有限公司 2023 年 11 月在项目 周边海域进行的环境质量现状调查资料。

		· · · · · · · · · · · · · · · · · · ·
调查时间	调查站位	监测单位
2023年11月	海水水质 20 个 海洋沉积物 10 个 海洋生态 12 个 生物质量 12 个 潮间带断面 3 条 渔业资源 12 个	天津中环天元环境检测技术 服务有限公司

表 2.2.5-1 项目海域环境现状引用资料一览表

2.2.5.1. 海水水质现状调查与评价

(1) 调查站位

2023年11月共布设调查站位20个,调查站位布设见表2.2.5-2和图2.2.5-1。

(2) 调查项目

2023年11月监测项目包括:水温、盐度、硫化物、挥发性酚、pH、悬浮物、溶解氧、化学需氧量、活性磷酸盐、无机氮(氨-氮、硝酸盐-氮、亚硝酸盐-氮)、石油类、重金属(Zn、Pb、Cd、Cu、Hg、As、Cr)。

(3) 样品的采集和分析测定方法

所有样品的采集、保存、运输和分析均按照《海洋监测规范》(GB 17378-2007)

和《海洋调查规范》(GB/T 12763-2007)的要求进行。

各参数的测定按《海洋监测规范》(GB 17378-2007)规定的分析方法执行。 主要调查项目及分析方法见表 2.2.5-3。

表 2.2.5-3 水质中各监测项目的分析方法

			·
调查内容	分析方法	检出限	依据标准
水温	表层水温表法		GB 17378.4-2007(25.1)
pН	pH 计法		GB 17378.4-2007(26)
盐度	盐度计法	2	GB 17378.4-2007(29.1)
悬浮物	重量法	2mg/L	GB 17378.4-2007(27)
溶解氧	碘量法		GB 17378.4-2007(31)
化学需氧量	碱性高锰酸钾法	0.15mg/L	GB 17378.4-2007(32)
亚硝酸盐氮	萘乙二胺分光光度法	0.28μg/L	GB 17378.4-2007 (37)
硝酸盐氮	锌镉还原法	0.70μg/L	GB/T 12763.4-2007 (11)
氨氮	次溴酸盐氧化法	0.42μg/L	GB 17378.4-2007 (36.2)
活性磷酸盐	磷钼蓝分光光度法	0.62μg/L	GB 17378.4-2007 (39.1)
硫化物	亚甲基蓝分光光度法	0.2μg/L	GB 17378.4-2007(18.1)
挥发性酚	4-氨基安替比林分光光度法	1.1μg/L	GB 17378.4-2007
石油类	紫外分光光度法	3.5µg/L	GB 17378.4-2007(13.2)
铜	无火焰原子吸收分光光度法	0.2μg/L	GB 17378.4-2007(6.1)
铅	无火焰原子吸收分光光度法	0.03µg/L	GB 17378.4-2007(7.1)
镉	无火焰原子吸收分光光度法	0.01µg/L	GB 17378.4-2007(8.1)
铬	无火焰原子吸收分光光度法	0.4μg/L	GB 17378.4-2007(10.1)
锌	火焰原子吸收分光光度法	3.1µg/L	GB 17378.4-2007(9.1)
汞	原子荧光法	0.007µg/L	GB 17378.4-2007(5.1)
砷	原子荧光法	0.5μg/L	GB 17378.4-2007(11.1)

(4) 水质调查结果

(5) 水质现状评价

① 评价因子

现状评价因子包括: pH、溶解氧、化学需氧量、活性磷酸盐、无机氮、硫化物、挥发酚、石油类、铜、铅、锌、镉、总铬、汞、砷等。

②评价方法

海水的环境质量评价,采用标准指数法,对工程海域水质现状进行评价。单因子的评价模式:对一般污染物,污染指数按下式计算:

$$S_{i,j} = C_{i,j} / C_{si}$$

式中: $S_{i,i}$ ——评价因子 i 的水质指数, 大于 1 表明该水质因子超标;

 $C_{i,j}$ ——评价因子 i 在 j 点的实测统计代表值,mg/L;

 C_{si} ——评价因子 i 的水质评价标准限值,mg/L。

另外,根据 pH、溶解氧 (DO) 的特点,其评价模式分别为:

DO

$$S_{DO, j} = DO_s/DO_j$$
 $DO_j \leq DO_f$

$$S_{DO, j} = \frac{|DO_f - DO_j|}{DO_f - DO_c}$$
 $DO_j > DO_f$

其中: SDO. 1——溶解氧的标准指数,大于1表明该水质因子超标;

 DO_i ——溶解氧在 i 点的实测统计代表值,mg/L;

DOs——溶解氧的水质评价标准限值, mg/L;

DOf——饱和溶解氧浓度,mg/L,对于盐度比较高的湖泊、水库及

入海河口、近岸海域, $DO_f = (491 - 2.65S)/(33.5 + T)$.

S——实用盐度符号,量纲为 1: T——水温, $^{\circ}$ $^{\circ}$ 。

pН

pH 评价指数按下式如下:

$$S_{pH,j} = \frac{7.0 - pH_j}{7.0 - pH_{sd}}$$
 $pH_j \le 7.0$

$$S_{pH,j} = \frac{pH_j - 7.0}{pH_{--} - 7.0}$$
 $pH_j > 7.0$

式中: $S_{pH,j}$ — pH 值的指数,大于 1 表明该水质因子超标;

 pH_{su} ——pH 值实测统计代表值; pH_{su} ——评价标准中 pH 值的下限值; pH_{su} ——评价标准中 pH 值的上限值。

③评价标准

以《海水水质标准》(GB 3097-1997)作为评价标准,对本项目周边海域的海水环境质量进行逐级评价。

污染物名称	第一类	第二类	第三类	第四类	
SS	人为增加的量<			人为增加的量≤150	
11	7.8~8.5 同时不超出该海	F 域正常变	6.8~8.8 同时不超出该海域正常变动范围		
pН	动范围的 0.2pH -	单位	的 0.5pH 单位		
DO>	6	5	4	3	
COD≤	2	3	4	5	
活性磷酸盐≤	0.015		0.030	0.045	
无机氮≤	0.20	0.30	0.40	0.50	
Cu≤	0.005	0.010 0.050)50	
Hg≤	0.00005	0.0002		0.0005	
Pb≤	0.001	0.005 0.010		0.050	
Zn≤	0.02	0.050	0.10	0.50	
Cr≤	0.05	0.10	0.20	0.50	
石油类≤	0.05		0.30 0.50		
Cd≤	0.001	0.005	0.01		
As≤	0.020	0.030	0.050		
硫化物≤	0.02	0.05	0.10	0.25	
挥发性酚≤	0.005	0.005	0.010	0.050	
氰化物≤	0.005	0.005	0.10	0.20	

表 2.2.5-5 海水水质标准

④调查区水质评价结果

水质单因子标准指数统计表见表 2.2.5-6。

⑤水质评价结论

2023年11月评价结果表明: pH、溶解氧、化学需氧量、石油类、硫化物、挥发酚、铜、铅、锌、镉、总铬和砷均满足一类海水水质标准。

活性磷酸盐全部 20 个站位均超一类海水水质标准,超标率为 100%;有 19 个站位超过二类、三类、四类海水水质标准,超标率为 95%。无机氮全部 20 个站位均超出一类海水水质标准,超标率为 100%;有 1 个站位超过四类海水水质标准,超标率为 5%。 汞有 14 个站位超过一类海水水质标准,超标率为 70%,但均满足二类海水水质标准。

本次调查区域主要污染因子为无机氮和活性磷酸盐超标,超标原因可能是周边河流入海汇入陆源污染。

2.2.5.2. 海洋沉积物环境质量现状调查与评价

(1) 调查站位

2023年11月, 共布设10个沉积物调查站位, 见表2.2.5-2和图2.2.5-1。

(2)调查项目

监测项目为有机碳、石油类、硫化物、铜、铅、锌、镉、铬、汞、砷,共计 10 项。

(3) 分析测定方法

各监测项目的测定按《海洋监测规范》(GB 17378-2007)中规定的分析方法进行。

序号	项目	分析方法	方法检出 限	方法标准
01	有机碳	重铬酸钾氧化-还原容量法	0.20%	
02	硫化物	亚甲基蓝分光光度法	0.3×10 ⁻⁶	
03	油类	紫外分光光度法	3.0×10 ⁻⁶	
04	铜	无火焰原子吸收分光光度法	0.5×10 ⁻⁶	
05	铅	无火焰原子吸收分光光度法	1.0×10 ⁻⁶	《海洋监测规范》
06	镉	无火焰原子吸收分光光度法	0.04×10 ⁻⁶	(GB 17378.5-2007)
07	锌	火焰原子吸收分光光度法	6.0×10 ⁻⁶	
08	总汞	原子荧光法	0.002×10 ⁻⁶	
09	砷	原子荧光法	0.06×10 ⁻⁶	
10	铬	无火焰原子吸收分光光度法	2.0×10 ⁻⁶	

表 2.2.5-7 分析项目和分析方法

(4) 沉积物分析结果

(5) 沉积物现状评价

①评价标准和评价方法

a.评价标准:采用《海洋沉积物质量》(GB 18668-2002)中相应标准。各评价项目标准值见表 2.2.5-9。

项目		标准限值			
	第一类	第二类	第三类		
硫化物(×10-6)	300.0	500.0	500.0		
有机碳(×10-2)	2.0	3.0	4.0		
石油类(×10-6)	500.0	1000.0	1500.0		
汞(×10 ⁻⁶)	0.20	0.50	1.00		
镉(×10-6)	0.50	1.50	5.00		
铅(×10-6)	60.0	130.0	250.0		
铜(×10 ⁻⁶)	35.0	100.0	200.0		
铬(×10 ⁻⁶)	80.0	150.0	270.0		

表 2.2.5-9 《海洋沉积物质量》节选

锌(×10-6)	150.0	350.0	600.0
砷(×10-6)	20.0	65.0	93.0

b.评价方法:评价方法采取常用的标准指数法,即环境因子实测值与海洋沉积物质量标准之比。凡是单因子污染指数≤1,认为该站沉积物没有遭受该因子的污染,>1为沉积物遭受该因子污染,数值越大污染越重。

②沉积物单因子评价结果和评价结论

本次调查沉积物化学单项环境因子评价结果见表 2.2.5-10。

现状评价结果显示:各调查站位各评价因子均符合第一类海洋沉积物质量标准,该海域沉积物质量良好。

2.2.5.3. 海洋生物体质量现状调查与评价

(1) 调查时间

2023年11月。

(2) 调查站位

2023年11月调查站位见表 3.2.6-2和图 3.2.6-1。

(3)调查内容

调查期间在调查海域各站位获取的样品中选取有代表性的生物分析其中的铜、铅、锌、镉、铬、汞、砷、石油烃的含量。

(4) 分析测定方法

将样品取其肌肉部分,参照《海洋监测规范》(GB17378.6-2007)进行实验分析。

	长 2.2.3-11						
项目	分析方法	仪器	检出限				
铜	无火焰原子吸收分光光度 法	AA800 原子吸收分光光度计	0.4mg/kg				
锌	火焰原子吸收分光光度法	AA800 原子吸收分光光度计	0.4mg/kg				
铅	无火焰原子吸收分光光度 法	AA800 原子吸收分光光度计	0.04mg/kg				
镉	无火焰原子吸收分光光度 法	AA800 原子吸收分光光度计	0.005mg/kg				
汞	冷原子吸收光度法	AFS-8220 原子荧光分光光度计	0.01mg/kg				
砷	原子荧光法	AFS-8220 原子荧光分光光度计	0.2mg/kg				
铬	无火焰原子吸收分光光度 法	TAS-990 AFG 原子吸收分光光度计 (AAS)	0.04mg/kg				
石油类	荧光分光光度法	日立 650-60 荧光仪	0.2mg/kg				

表 2.2.5-11 生物体中各监测项目的分析方法

(5) 评价方法和评价标准

海洋生物质量评价采用标准指数法。

调查海域生物质量中双壳贝类按《海洋生物质量》(GB 18421-2001)中一类标准进行评价(见表 2.2.5-12);甲壳类、鱼类、软体类(非双壳类)海洋生物质量(除石油烃外)执行《全国海岸和海涂资源综合调查简明规程》(第九篇 环境质量调查)中的海洋生物质量评价标准,石油烃执行《第二次全国海洋污染基线调查技术规程》(第二分册)中的海洋生物质量评价标准(见表 2.2.5-13),铬、砷无标准不评价。

项目	标准值				
	一类	二类	三类		
汞(mg/kg)≤	0.05	0.10	0.30		
镉(mg/kg)≤	0.2	2.0	5.0		
铅(mg/kg)≤	0.1	2.0	6.0		
铜(mg/kg) ≤	10	25	50(牡蛎 100)		
锌(mg/kg)≤	20	50	100(牡蛎 500)		
铬(mg/kg)≤	0.5	2.0	6.0		
砷(mg/kg)≤	1.0	5.0	8.0		
石油类(mg/kg) ≤	15	50	80		
粪大肠菌群数(个/kg)	3000	5000	-		

表 2.2.5-12 海洋生物质量标准(双壳类)

表 2.2.5-13 鱼类、甲壳类和软体类海洋生物质量评价标准 (鲜重: mg/kg)

生物类别	总汞	Cu	Pb	Cd	Zn	石油烃	附注
鱼类	0.3	20	2.0	0.6	40	20	石油烃执行《第二次全国海洋污
甲壳类	0.2	100	2.0	2.0	150	20	染基线调查报告》中的评价标 准,其余执行《全国海岸和海涂
软体类	0.3	100	10	5.5	250	20	资源综合调查简明规程》中的评 价标准

- (6) 调查结果
- (7) 评价结果统计
- 2023年11月生物质量样品单因子污染指数评价结果见表 2.2.5-15。
- (8) 评价结论

2023年11月调查所采集到的生物体中鱼类(斑尾刺虾虎鱼)、软体动物类(扁玉螺)的石油烃、铜、铅、镉、锌、汞含量均符合《全国海岸带和海涂资源综合调查简明规程》《第二次全国海洋污染基线调查技术规程》标准,双壳贝类(毛蚶)的石油烃、铜、铅、锌、铬、汞、砷含量均符合《海洋生物质量》一类执行标准,金属镉超一类执行标准,超标率为100%,符合二类执行标准。

2.2.6. 海洋生态概况

生物评价是环境影响评价的重要内容之一,生物评价的目的在于通过海洋生物分布特征、生物量和生物群落组成的调查,了解被调查海区敏感类、关键类及经济类生物、生态现状及变化情况,并为海洋环境影响评价提供基础数据。项目所在海域海洋生态概括引用天津中环天元环境检测技术服务有限公司于2023年11月在项目周边海域进行的生态调查。

2.2.6.1. 调查时间和调查站位

- (1) 调查时间: 2023年11月
- (2)调查站位、调查项目:

2023 年 11 月共布设 12 个调查站位,调查项目包括叶绿素 a、浮游植物、浮游动物、大型底栖生物和潮间带生物。调查站位见表 2.2.5-2 和图 2.2.5-1。

2.2.6.2. 采样分析及评价方法

1、采样和分析方法

依据《海洋监测规范 第7部分:近海污染生态调查和生物监测》(GB 17378.7-2007)进行样品采集:

浮游植物:以浅水III型浮游生物网(网口直径为 37 cm,网全长 1.5 m,筛绢孔径 0.076 m-m)自海底至表层垂直拖网,样品经 5%福尔马林溶液固定保存。室内分析鉴定按《海洋调查规范》中规定的方法进行,最后浮游植物出现的个体数换算成个/m³ 作为调查水域的现存量指标。

浮游动物:以浅水II型浮游生物网自海底至表层垂直拖网,样品用 5%福尔马林溶液固定保存,采样结束后在实验室内进行镜检分析,室内分析鉴定按《海洋调查规范》中规定的方法进行,最后浮游动物出现的个体数换算成个/m³,浮游动物生物量换算成 mg/m³ 作为调查水域的现存量指标。

大型底栖生物:以箱式表面采泥器采集海底泥样,将生物样品经 1 mm 套 筛淘洗后,挑拣全部生物个体作为 1 个定量样品,以甲醛液固定保存。

叶绿素 a: 叶绿素是浮游植物细胞内的主要色素,能利用太阳光能把无机

物转化为有机物,海洋中的有机物 90%以上是由它产生的。由于叶绿素含量与光合作用速率和生物量有着直接的关系,根据叶绿素含量可估算水域初级生产力。海洋中叶绿素的浓度是浮游植物现存量的重要指标,也是决定海洋初级生产力的主要因子。因此,叶绿素和海洋初级生产力的研究都被列为海洋生物资源开发和生态学研究的重要内容。

用普通塑料桶在各测站采表层水 2 L,水深大于 10m 时同时采底层水 2L,经 0.45 μm 微孔滤膜抽滤,用 90%丙酮萃取其叶绿素,离心后,根据叶绿素 a、b、c 的丙酮萃取液在红光波段各有一吸收峰,用上海光谱 SP-1920 型紫外可见分光光度计测定其吸光值,根据 Jeffoey-Humphreg 方程式,计算海水中叶绿素 a 的浓度。

潮间带生物:潮间带生物按照《海洋监测规范》(GB 17378.7-2007)的标准,根据调查目的选择潮间带断面,在高潮带、中潮带、低潮带(记录经纬度)分别用 25 cm×25 cm 定量框进行生物采集,高、中、低潮带分别取样并于野外淘洗装瓶,所采集样品以 5%福尔马林固定液固定,标本带回实验室分析(包括种类鉴定、称量及计算等)。

2、评价方法

(1) 叶绿素 a 和初级生产力:

叶绿素 a 的测定按照《海洋调查规范》(GB/T 12763-2007)的方法,用90%的丙酮萃取,使用荧光分光光度计进行测定。激发光波长 450 nm,发射光波长 685 nm。

 $C_{Chl-a} = \frac{F_d(R_b-R_a)v}{V}$ 进行计算,式中, C_{Chla} 为叶绿素 a 的浓度(mg/m³), F_d 为量程档的系数(mg/m³) , R_b 和 R_a 分别为酸化前后的荧光值,v 为提取液的体积(mL),V 为过滤海水的体积(mL)。

初级生产力采用叶绿素法,按照 Cadée 和 Hegeman (1974)提出的简化公式: P=PsED/2 计算,式中, P 为每日现场的初级生产力(mg·C/(m²·d)), Ps 为表层水中浮游植物的潜在生产力(mg·C/(m³·h)), E 为真光层的深度(m), D 为白昼时间的长短(h), 取 15h。其中,表层水(0.5 m 以内)中浮游植物的潜在生产力(Ps)根据表层水中叶绿素 a 的含量计算: Ps= CaQ, 式中, Ca 为表层

叶绿素 a 的含量 (mg/m^3) ,Q 为同化系数 $(mg\cdot C/(mg\ Chl\ a\cdot h))$ 。真光层(E)的深度取透明度的 3 倍。同化系数(Q)采用 3.7 (Ryther, 1969)。

(2) 浮游生物、底栖生物、潮间带生物

根据各站生物所获样品的生物密度,分别对样品的多样性指数、均匀度、丰度、优势度等进行统计学评价分析,计算公式为:

① 香农-韦弗(Shannon-Weaver)多样性指数:

$$H' = -\sum_{i=1}^{S} P_i \log_2 P_i$$

式中: H'——种类多样性指数;

S——样品中的种类总数;

 P_{i} — 第 i 种的个体数 (n_{i}) 与总个体数 (N) 的比值。

② 均匀度 (Pielou 指数):

$$J = \frac{H'}{H_{\text{max}}}$$

式中: J 表示均匀度;

H'——前式计算的种类多样性指数值;

 H_{max} —为 log_2S ,表示多样性指数的最大值,S 为样品中的种类总数。

③ 优势度

$$D = \frac{N_1 + N_2}{NT}$$

式中: D-优势度

N₁—样品中第一优势种的个体数; N₂—样品中第二优势种的个体数; NT—样品中的总个体数。

④ 丰度(Margalef 计算公式):

$$d = \frac{S - 1}{\log_2 N}$$

式中: d—表示丰度:

S—样品中的种类总数。

2.2.6.3. 调查结果

(1) 叶绿素 a

2023 年 11 月,调查海域各站叶绿素 a 浓度的变化范围为(2.32~6.30)μg/L, 平均值为 3.66μg/L。最高值出现在 8 号站位,最低值出现在 12 号站位(见图 2.2.6-1)。

(2) 浮游植物

1)种类组成

本次调查共鉴定浮游植物 31 种(见浮游植物种名录),其中硅藻 24 种, 占浮游植物出现种数的 77.4%; 甲藻 7 种,占 22.6%(见图 2.2.6-2)。

2) 浮游植物密度

调查海域浮游植物密度变化范围在(71153~310396)个/m³之间,平均密度为134419个/m³(见表2.2.6-1)。最高值出现在15号站,最低值出现在8号站。各站位浮游植物种类较多,分布也较均匀,站位18种类最多,有14种,站位12最少,有9种,平均为11种。

3) 优势种

本次调查浮游植物优势物种数为 5 种,全部为硅藻,优势度由高至低依次为尖刺伪菱形藻(Y=0.47)、威利圆筛藻(Y=0.18)、刚毛根管藻(Y=0.11)、薄壁几内亚藻(Y=0.07)、中肋骨条藻(Y=0.05)。

4) 浮游植物群落特征指数

调查海域浮游植物各站群落参数值分析统计结果见表 2.2.6-2。多样性指数、均匀度和丰度指数较均匀,其范围分别 1.17~1.94、0.51~0.81 和 0.71~1.08。 多样性指数最大出现在站位 18,最小在站位 2,平均为 1.57;均匀度最大出现在站位 4,最小在站位 2,平均为 0.66;丰度最大出现在站位 18,最小在站位 12,平均为 0.86。

(3) 浮游动物

1)种类组成

调查海域浮游动物 I 型网所获浮游动物共有 19 种(见浮游动物种名录),包括其中节肢动物门 11 种,占组成的 57.8%; 浮游幼体 6 种,占组成的 31.6%;

毛颚动物门和尾索动物门各 1 种,分别占组成的 5.3%。(见图 2.2.6-4)。

2) 浮游动物生物量

调查海域浮游动物湿重生物量变化范围在 (6.48~645) mg/m³之间,平均为 196 mg/m³ (见表 2.2.6-3)。生物量最高值出现在 6 号站,最低值出现在 12 号站。

3) 浮游动物密度

调查海域浮游动物密度变化范围在(49.5~1742) ind./m³之间,平均值为729ind./m³(见表 2.2.6-3)。密度最高值出现在6号站,最低值出现在12号站。

4) 优势种

本次调查所获浮游动物优势种共 7 种,依次为小拟哲水蚤(Y=0.56)、拟长腹剑水蚤(Y=0.16)、双壳类幼体(Y=0.06)、刺尾歪水蚤(Y=0.06)、多毛类幼体(Y=0.03)、中华哲水蚤(Y=0.02)、真刺唇角水蚤(Y=0.02)。

5) 浮游动物群落特征指数

调查海域浮游动物各站群落参数值分析统计结果见表 2.2.6-4。多样性指数、均匀度和丰度指数较均匀,其范围分别 1.42~1.79、0.54~0.71 和 1.85~2.47。 多样性指数最大出现在站位 20,最小在站位 8,平均为 1.61;均匀度最大出现在站位 12,最小在站位 13,平均为 0.60;丰度最大出现在站位 13,最小在站位 16,平均为 2.22。

(4) 大型底栖生物

1)种类组成

调查海域共出现底栖生物 14 种(详见底栖生物种名录),其中软体动物 7 种,环节动物 3 种,节肢动物 2 种,脊索动物和纽形动物各 1 种;软体动物 出现的种类数最多,占底栖生物种类组成的 50.0%;环节动物次之,占 21.5%,节肢动物占 14.3%,脊索动物和纽形动物各占 7.1%(见图 2.2.6-6)。

2) 生物量及生物密度

调查海域各站位底栖生物生物密度、生物量和种类数见表 2.2.6-5。调查海域底栖生物湿重生物量变化范围在(3.9423~338.0840)g/m²之间,平均为43.3617 g/m²。生物量最高值出现在 13 号站,最低值出现在 2 号站。调查海域底栖生物密度变化范围在(12~36)ind./m²之间,平均值为 24ind./m²。密度

最高值出现在12号站,最低值出现在2号站。

3) 底栖生物群落指数

调查海域底栖生物的各种指数计算结果如表 2.2.6-6。从表中可以看出,大型底栖生物多样性指数变化范围为 0.42~1.52,平均为 1.13;大型底栖生物均匀度指数变化范围为 0.61~1.00,平均为 0.86;丰度指数变化范围为 0.33~1.28,平均为 0.88。

(5) 潮间带生物

1)种类组成

在 C1、C2 和 C3 共 3 条断面进行了潮间带生物的定量和定性调查,每个断面设置 6 个站位,共获潮间带生物 17 种(详见潮间带生物种名录),其中,软体动物门出现种类最多,为 8 种,占潮间带生物总种类数的 47.1%;节肢动物次之,为 5 种,占潮间带生物总种类数的 29.4%;环节动物 3 种,占总种类数的 17.6%;脊索动物 1 种,占总种类数的 5.9%(图 2.2.6-8)。

2) 潮间带生物生物量

本次调查各断面生物量见表 2.2.6-7。三个断面中, C2 断面生物量最高, 平均为 350.9637 g/m², C3 断面生物量最低, 为 134.2572 g/m²。3 个断面中 C1 生物量占优势的类群为环节动物门, C2 和 C3 生物量占优势的类群均为软体动物门。从潮带来看,高潮带生物量最高,低潮带生物量最低。

3) 潮间带生物生物密度

本次调查各断面生物密度见表 2.2.6-8。三个断面中,C1 断面生物密度最高,平均为 185 个/m², C3 断面生物密度最低,平均为 97 个/m²。在三个断面中,C1 和 C3 断面生物密度占优势的类群均为环节动物门,C2 断面生物密度占优势的类群为软体动物门。从潮带来看,中潮带平均密度最高,低潮带平均密度最低。

2.2.7. 渔业资源

2.2.7.1. 调查站位布设

渔业资源调查资料引用天津中环天元环境检测技术服务有限公司于 2023 年 11 月在项目周边海域进行的鱼卵仔鱼、游泳动物渔获物种类组成、渔获物 生物学特征、优势种分布、渔获量分布和资源密度(重量、尾数)等,共布设12个站位。调查站位见表 2.2.5-2 和图 2.2.5-1。

2.2.7.2. 调查内容和调查方法

渔业资源调查内容包括鱼卵、仔鱼种类组成、数量分布、丰度或密度、优势种;游泳动物类组成、优势种、渔获量分布和现存资源密度(含重量和尾数密度)。

鱼卵、仔稚鱼、游泳动物现场采样按照《海洋调查规范-海洋生物调查》的有关要求进行。鱼卵、仔稚鱼采用浅水 I 型浮游动物网。垂直拖网每站自底层到表层垂直拖网 1 次(定量),水平拖网每站拖曳 10min(定性)。样品经5%福尔马林固定,带回实验室后进行分类、鉴定和计数。

游泳动物拖网调查使用当地的单拖渔船,网口内径长22米,网身长10米。每站拖曳0.5h左右,拖网速度控制在3km/h。每网调查的渔获物进行分物种渔获重量和尾数统计。记录网产量,进行主要物种生物学测定。

2.2.7.3. 数据处理及评价方法

(1) 渔业资源密度(重量、尾数)估算方法

渔业资源密度以各站拖网渔获量(重量、尾数)和拖网扫海面积来估算, 计算式为:

$$\rho_i = C_i/a_i q$$

式中: ρ_i —第 i 站的资源密度(重量: kg/km²; 尾数: 10^3 ind./km²);

C:—第 i 站的每小时拖网渔获量(重量: kg/h; 尾数: ind./h);

 a_i —第 i 站的网具每小时扫海面积(km^2/h)(网口水平扩张宽度(km)×拖曳距离(km)),拖曳距离为拖网速度(km/h)和实际拖网时间(h)的乘积:

q—网具捕获率(可捕系数,=1-逃逸率),q 取 0.5。

- (2) 物种多样性计算公式
- (a) 相对重要性指数 IRI

用 Pinkas (1971) 的相对重要性指数 IRI 来研究鱼类优势种的优势度,计算

公式如下:

$$IRI = (N\% + W\%) \times F\%$$

上式中,N%为某一物种尾数占总尾数的百分比,W%为该物种重量占总重量的百分比,F%为某一物种出现的站数占调查总站数的百分比。

- 一般情况下,IRI 值大于 1000 的种类为优势种,IRI 值在 $100\sim1000$ 之间为重要种,IRI 值在 $10\sim100$ 之间为常见种,IRI 值在 $1\sim10$ 之间为一般种,IRI 值在 1 以下为少见种。由此来确定各个种类在生物群落中的重要性。
- (b) 鱼卵、仔稚鱼的优势种分析与浮游植物等海洋生态调查项目分析方法相同。

调查海区浮游植物、浮游动物、底栖生物、潮间带生物的优势种分析采用以下公式计算:

$$Y = ni/N*fi$$

式中: ni——第 i 种的数量; fi——该种在各站出现的频率; N——群落中所有种的数量。

当 Y>0.02 时,判定为调查海区的优势种。

(3) 物种多样性指数计算方法

根据中国环境调查总站的《环境质量报告书(水质生物学评价部分)》的有 关近海海域及河口水质生物群落评价要求,结合《近海污染生态调查和生物调 查》(HY/T003.9-91)中污染生态调查资料常用方法,本次调查的海洋生态生 物学评价采用 hannon-Weaner 多样性指数。

香农一韦弗(Shannon—Weaner)多样性指数:

$$H' = -\sum_{i}^{S} Pi \log_{2} Pi$$

式中, H'----为物种多样性指数值;

S----为样品中的总种数:

 P_{i} -----为第 i 种的个体丰度(n_{i})与总丰度(N)的比值(n_{i} /N)。一般认为,正常环境,该指数值高,环境受污,该指数值降低。均匀度指数:

$$J' = H' / \log_2 S$$

式中, J'----表示均匀度指数值:

H'----表示物种多样性指数值;

S ----表示样品中总种数。

J'值范围为 $0\sim1$ 之间,J'值大时,体现种间个体分布较均匀,群落结构较稳定;反之,J'值小反映种间个体分布欠均。由于污染环境的种间个体分布差别大,表现为J'值低,群落结构往往不稳定。

丰富度指数:

$$d = (S-1)/\log_2 N$$

式中, d ----表示丰富度指数值;

S----表示样品中的总种数;

N----表示群落中所有物种的总丰度。

一般而言,健康的环境,种类丰富度高;污染环境,种类丰富度较低。单纯度指数:

$$C=SUM(ni/N)^2$$

式中, C----表示单纯度指数;

N---为群落中所有物种丰度或生物量, ni 为第 i 个物种的丰度或生物量。

2.2.7.4. 调查结果

1、鱼卵、仔稚鱼调查结果

本次调查未捕获到鱼卵与仔稚鱼。

2、游泳动物调查结果

(1) 游泳动物种类组成

2023 年 11 月调查海域 12 个站位的底拖网调查取样中,共获渔业资源生物 25 种(见附表游泳动物种名录),其中鱼类 13 种,占总种数的 52%;虾类5种,占游泳动物总种数 20%;蟹类5种,占游泳动物总种数 20%;头足类2种,占总种数的8%。各站位渔业资源种类及数量见表 2.2.7-1。调查海域渔业生物的资源结构以鱼类和甲壳类为主,头足类种类所占比例较少。

(2) 生物数量和重量

2023年11月调查期间,游泳动物生物密度及生物量组成如表 2.2.7-2 所示。

12个站位海域游泳动物生物量范围为 1.10kg/h~4.81kg/h, 平均游泳动物生物量为 3.04 kg/h; 其中站位 8 游泳动物生物量最低,站位 16 游泳动物生物量最高。12 个站位海域游泳动物生物密度范围为 131ind./h~317ind./h, 平均游泳动物生物密度为 237ind./h; 其中站位 8 游泳动物生物密度最低,站位 2 游泳动物生物密度最高。

2023年11月游泳动物的总渔获数量为2838尾,12个站游泳动物渔获数量变化范围为(131~317) ind/h,8号站最低,2号站最高,各站位平均渔获数量为237 ind/h。其中鱼类1861尾,占游泳动物总渔获数量的65.6%;虾类879尾,占游泳动物总渔获数量的31.0%;蟹类89尾,占游泳动物总渔获数量的3.1%;头足类9尾,占游泳动物总渔获数量的0.3%,见图2.2.7-3。

2023 年 11 月游泳动物的总渔获重量为 36486.43 g, 12 个站游泳动物渔获重量变化范围为(1098.13~4811.13)g/h, 8 号站最低,16 号站最高,各站位平均渔获重量为 3040.54 g/h。其中鱼类 32982.11 g, 占游泳动物总渔获重量的 90.4%; 虾类 2610.2 g, 占游泳动物总渔获重量的 7.15%; 蟹类 625.53 g, 占游泳动物总渔获重量的 1.71%; 头足类 268.59 g, 占总渔获重量的 0.74%, 见图 2.2.7-4。

(3) 优势种

应用 Pinkas 相对重要性指数(index of relative importance, IRI)确定种类 在群落中的重要性。本报告中划定 IRI 大于 600 的种类为优势种:

$$IRI= (W+N) \times_F$$

式中,N为某一种类的尾数占总尾数的百分比;W为某一种类的重量占总重量的百分比;F为某一种类出现的站位数占总站位数的百分比。

结果显示,调查海域优势种类及其 IRI 指数见表 2.2.7-3。1 种甲壳类和 4 种鱼类为优势种,分别为鱼类的斑尾刺虾虎鱼、鮻、矛尾虾虎鱼、焦氏舌鳎和甲壳类的日本鼓虾。其中鱼类的斑尾刺虾虎鱼为第一优势种,且 IRI 指数明显大于其他种类。

- 4)资源密度
- a.各站位资源密度
- b.各种类资源密度

3. 资源生态影响分析

3.1. 资源影响分析

3.1.1.岸线资源占用情况

本项目为开放式养殖用海,项目位置位于营口鲅鱼圈望海街道西侧浅海海域,距离岸线约3.9km,不占用岸线,项目开展开放式底播增殖,不涉及围填海工程及构筑物建设,不形成新的岸线。

因此,项目不会对岸线资源产生影响。

3.1.2.海涂资源占用情况

项目位于浅海水域,水深约-5m,位于潮间带向海侧,不占用海涂资源。项目开展开放式底播养殖,无新建构筑物和设施,养殖期间采用天然养殖模式,不投加饵料和药物,同时控制养殖规模和密度,不会对周边海涂资源产生影响。

3.1.3.海湾空间资源占用情况

本项目为开放式养殖用海,申请用海面积 167.6820 公顷。项目区拟开展贝类底播增养殖,占用所在区域浅海海域,占用海域空间层位为海床,但项目不涉及改变海湾自然形态涉水工程和构筑物的建设,是对海湾空间资源的合理利用。项目区拟开展贝类底播增养殖,不涉及改变海域自然属性的工程建设,不会对海域功能造成不可逆的不利影响,同时通过底播增养殖,能够恢复区域底栖生物资源。

3.1.4. 对其他资源的影响

项目开展底播增养殖,不涉及工程建设,对周边港口、旅游资源等均无影响。综上,项目用海对周边海域空间资源的影响较小。

3.2. 生态影响分析

3.2.1.水文动力环境、地形地貌与冲淤环境影响分析

项目用海主要进行开放式底播增养殖,不涉及工程建设,不改变海域自然属性,对水动力条件及地形地貌冲淤环境等无影响。

3.2.2.水质环境影响分析

本项目营运期间底播贝类增养殖无需投喂任何人工饵料和药物,养殖产品完全依靠所在海域天然环境生长,是一种原生态的自然生长模式。本项目位于开阔的近海水域,水体交换条件好、水流流速平稳,养殖密度适中。贝类底播养殖对海洋水质环境的影响很小,仅在生长过程中分泌少量排泄物,在科学合理的养殖情况下对水域水质的影响也大大降低。

根据营口市国土空间总体规划,该区域为渔业用海区,渔业用海区环境条件评价指标为富营养化指数。根据相关文献研究,非养殖区的无机氮浓度高于滤食性贝类养殖区,说明通过贝类的滤食作用,有利于水质中氮、磷等营养元素的吸收利用,降低水质富营养化的同时,也是对区域资源的有效利用。因此,本项目开放式底播贝类养殖对周边海域水环境质量的影响较小。

项目运营期采用渔船船耙捕捞的方式,严禁采用底拖网及电拖耙方式采捕。 渔船拖耙采捕的影响类比《大连獐子岛渔业集团股份有限公司新增年滚动25万亩 虾夷扇贝底播增殖项目环境影响报告书》中底播虾夷扇贝捕捞情况,耙具采捕引 起悬浮物的扩散范围(10mg/L浓度)局限在作业区周围20m范围内。本项目采捕 作业时产生悬浮物浓度及影响范围与作业强度密切相关,其悬浮物产生速率低于 拖网作业,因此其引起悬浮物的影响范围(10mg/L浓度)在作业区周围20m范围 之内,且随着作业停止而消失,不会对项目所在海域产生长久的不良影响。因此, 捕捞作业产生的泥沙搅动影响在可接受范围内。捕捞作业过程中,运输船只可能 存在一定的油污污染隐患,但通过严格驾驶员操作、定期检修船舶以及采取良好 的油污控制应急措施,均可避免油污事故的发生。本项目采捕期应严格控制捕捞 作业强度及捕捞作业范围,在项目确权海域范围内进行采捕,严禁超出确权范围 进行采捕作业。

综上所述,本项目实施对区域水质环境的影响较小。

3.2.3.海洋沉积物环境影响分析

项目除捕捞期产生少量悬浮泥沙外,其余污染物均统一收集,不排海。

悬浮泥沙主要为捕捞期间捕捞活动对海域原有底泥的扰动和再排放,无新增污染物。根据项目及周边区域海洋沉积物调查结果显示该海域海洋沉积物质量良好。因此,本项目实施对沉积物环境影响很小。

3.2.4.生物生态影响分析

(1) 浮游生物的影响分析

贝类底播养殖对浮游生物的影响主要包括几方面:

①贝类滤食降低浮游生物的数量

贝类是机会主义滤食者,浮游植物是其主要食物,浮游动物 (纤毛虫类、鞭毛虫类)、原生动物和细菌及有机碎屑和溶解性氨基酸也是贝类的食物来源。贝类具有很强的滤食能力,当贝类对浮游生物的滤食强度超过其再生补充速度时,即表现为负有效增长,水体颗粒物浓度下降。有研究报道统计贻贝养殖区表层水体中的叶绿素 a (Chl-a) 浓度比非养殖区低 80%以上。此外,贝类对养殖区浮游生物群落的滤食压力存在明显的季节性变化,这种季节性变化主要是由于贝类的滤食效率受水温、盐度和溶解氧等因素影响,而这些环境因子存在显著的季节性变化特征。值得注意的是,贝类对浮游生物数量的影响不仅限于养殖区局部水域,对毗连水域也有影响。

②贝类排泄和生物沉积对浮游生物的影响

养殖贝类的收获相当于把储存在浮游生物体内的 N、磷 (P) 等营养物质从海水中移出。除此之外,养殖贝类还可以通过排泄溶解态营养盐和产生生物沉积的方式改变海水的营养盐结构进而对浮游植物产生影响。贝类排泄是养殖区浮游植物获取生长所需 N、P 营养盐的主要途径。贝类排泄的 N 主要是氨氮 (NH4+),占总排泄 N 的 70%以上。

因此, 贝类既是浮游植物的消费者又是培育者, 其排泄溶解态无机氮、无机 磷促进了浮游植物的生长, 在一定程度上抵消了滤食对浮游植物数量造成的损 耗。

③贝类选择性滤食改变浮游生物群落结构

贝类通过栉鳃或者瓣鳃过滤捕获悬浮颗粒物,对颗粒物的大小具有一定的选

择作用。中尺度实验表明,贝类能有效过滤直径为 2~8μm 的颗粒物,有些种类如栉孔扇贝(*Chlamys farreri*)等可高效过滤15μm 的颗粒物,但对于直径小于 2μm 的颗粒物滤食效率则显著降低。研究显示在贝类滤食强度高的区域,微型浮游生物种类周年均可能是浮游植物群落的优势种。

项目区海域水质肥沃,浮游植物生物量较大,存在赤潮隐患;本项目底播养殖菲律宾蛤仔等贝类,通过贝类滤食作用,通过科学控制养殖密度和捕捞强度,在一定程度上可以抑制浮游植物数量剧增,减少赤潮发生的可能性,对水质有一定的净化作用。

(2) 对底栖生物的影响分析

本项目捕捞过程中由于底质扰动,会对底栖生物带来一定影响。项目位于浅海水域,小潮期水深相对较浅,尽量在小潮期选择人工捕捞的方式,减少船舶、器械等大面积、高强度捕捞作业,通过选用合理的捕捞器械,控制捕捞时间,严禁使用拖网渔船及电动拖耙,避开底栖生物繁殖期,这种影响可以降到最低。

同时,项目养殖品种为区域原有品种,无外来物种引进,运营期严格控制捕捞强度,避免对区域底栖生物资源的过度捕捞,有利于区域底栖生物资源量的恢复。

(3) 对生态群落的影响分析

本项目通过开放式底播养殖,能够补充、修复原水体的水生生物链中缺失的种类,底栖贝类资源的增加,有利于区域其他以贝类为食的渔业资源的恢复,提高海洋生物多样性。同时,本项目通过科学的轮捕轮放,严格限制投放和捕捞强度,坚持生态优先原则,定期开展生态群落调查与评估,有利于促进当地生态群落的健康发展。

3.2.5.对辽东湾国家级水产种质资源保护区的影响

项目位于辽东湾国家级水产种质资源保护区实验区范围内,距离核心区约13.9km。

- (1) 辽东湾国家级水产种质资源保护区基本情况
- ①保护区概况

东湾渤海湾莱州湾国家级水产种质资源保护区总面积为 23154.48 km²,其中

核心区面积为 9558.48 km², 实验区面积为 13596 km²。核心区特别保护期为 4 月 25 日至 6 月 15 日。保护区位于渤海的辽东湾、渤海湾和莱州湾三湾内,范围在 117°35′00″E—122°20′00″E,37°03′00″N—41°00′00″N 之间。

辽东湾国家级水产种质资源保护区位于辽东湾北部海域,海岸线西起绥中县和兴城市的交界点六股河入海口,向东北经葫芦岛连山河入海口、锦州的大笔山为折点,向东经大凌河入海口、大鱼沟,辽河口为拐点,向东南经二界沟、辽河口、东至大清河口,向西南经大望海赛、鲅鱼圈、仙人岛,南至营口市和大连市交界点浮渡河入海口。

核心区: 是由 4 个拐点顺次连线围成的海域,拐点坐标分别为(121°15′E,40°45′N; 121°45′E,40°45′N; 122°00′E,40°30′N; 121°00′E,40°30′N);

实验区: 是由于 7 个拐点顺次连线与北面的海岸线(即大潮平均高潮痕迹线) 所围的海域,拐点坐标分别为(120°30'15"E,40°15'45"N;120°40'00"E,40°10'00"N;120°55'00"E,40°10'00"N;121°00'00"E,40°20'00"N;120°45'00"E,40°20'00"N;121°20'00"E,39°55'00"N;121°57'37"E,40°06'40"N)

辽东湾国家级水产种质资源保护区总面积 9935 平方公里,其中核心区面积 1755 平方公里,实验区面积 8180 平方公里。

②保护对象

辽东湾保护区主要保护对象有小黄鱼、蓝点马鲛、银鲳等主要经济鱼类及梭子蟹。栖息的其他动物包括中国对虾、黄鲫、青鳞沙丁鱼、鱭、凤鱭、玉筋鱼、黄姑鱼、白姑鱼、叫姑鱼、棘头梅童、花鲈、鲻鱼、鲬、文蛤、银鱼、毛蚶、脊尾白虾、脉红螺等。

(2) 与保护区管理措施要求的符合性分析

《水产种质资源保护区管理暂行办法》(2016年修正)的实行对于强化和规范水产种质资源保护区管理、保护重要水产种质资源及其生存环境、促进渔业可持续发展和国家生态文明建设将发挥重要作用。水产种质资源保护区的保护和管理措施具体如下:

"第十五条 农业部应当针对国家级水产种质资源保护区主要保护对象的繁殖期、幼体生长期等生长繁育关键阶段设定特别保护期。特别保护期内不得从事捕捞、爆破作业以及其他可能对保护区内生物资源和生态环境造成损害的活动。

特别保护期外从事捕捞活动,应当遵守《渔业法》及有关法律法规的规定。第十六条 在水产种质资源保护区内从事修建水利工程、疏浚航道、建闸筑坝、勘探和开采矿产资源、港口建设等工程建设的,或者在水产种质资源保护区外从事可能损害保护区功能的工程建设活动的,应当按照国家有关规定编制建设项目对水产种质资源保护区的影响专题论证报告,并将其纳入环境影响评价报告书。

第十七条 省级以上人民政府渔业行政主管部门应当依法参与涉及水产种质资源保护区的建设项目环境影响评价,组织专家审查建设项目对水产种质资源保护区的影响专题论证报告,并根据审查结论向建设单位和环境影响评价主管部门出具意见。

建设单位应当将渔业行政主管部门的意见纳入环境影响评价报告书,并根据 渔业行政主管部门意见采取有关保护措施。

第十八条 单位和个人在水产种质资源保护区内从事水生生物资源调查、科学研究、教学实习、参观游览、影视拍摄等活动,应当遵守有关法律法规和保护区管理制度,不得损害水产种质资源及其生存环境。

第十九条 禁止在水产种质资源保护区内从事围湖造田、围海造地或围填海 工程。

第二十条 禁止在水产种质资源保护区内新建排污口。

在水产种质资源保护区附近新建、改建、扩建排污口,应当保证保护区水体不受污染。

第二十一条 水产种质资源保护区的撤销、调整、按照设立程序办理。

第二十二条 单位和个人违反本办法规定,对水产种质资源保护区内的水产种质资源及其生存环境造成损害的,由县级以上人民政府渔业行政主管部门或者其所属的渔政监督管理机构、水产种质资源保护区管理机构依法处理。"

根据前述《水产种质资源保护区管理暂行办法》的相关要求,本项目位于辽东湾国家级水产种质资源保护区实验区内,为开放式底播养殖用海,属于渔业用海,开放式底播养殖不涉及工程建设,无施工,不改变海域自然属性,不属于保护区禁止开展的围填海、新建排污口等活动,也不属于水利工程、疏浚航道、建闸筑坝、勘探和开采矿产资源、港口建设等需要编制对保护区影响专题论证的工

程。综上,项目用海符合保护区管理措施要求。

(3) 对保护区主要功能的影响

本项目性质为底播贝类养殖,采取自然生长模式,不投饵,不投放化学品、农药等污染物质,没有污染物产生,对保护区水质无影响;捕捞期间采用船拖耙的方式采捕,采捕作业产生的悬浮泥沙会对区域水质产生一定影响,但这种影响是暂时的,随着采捕的结束,悬浮泥沙会逐渐恢复至原水平,对底栖生物和水质影响时间短,船舶航行可能会造成溢油事故,通过严格驾驶员操作,同时严格控制采捕时间,利用先进采捕工具,通过上述措施,可以有效控制对区域水环境的影响和风险事故的发生。

项目开展底播养殖,不涉及改变海域自然属性的工程,不会截断鱼类洄游通道,不会破坏保护区保护对象产卵索饵及栖息环境。因此,项目建设不会对保护区主要功能造成影响。

(4) 对渔业资源影响

①主要保护物种影响

本项目位于辽东湾西部、距离大陆岸线约 3.9km 的海域。保护区主要保护物种为小黄鱼、蓝点马鲛、银鲳等,上述保护对象的主要产卵场位于辽东湾中部,项目位于主要保护对象产卵场的西北方,不占用保护物种"三场一通道"范围。

本项目养殖的菲律宾蛤仔,不是辽东湾国家级水产种质资源保护区主要保护物种的天敌,不会对区域保护物种产生不利影响,相反,贝类恰巧为蟹类及鱼类提供食物来源,业主养殖期间,不对保护蟹种和保护鱼类进行驱捕,对保护区的保护对象无影响。

②洄游性渔业资源影响

本章节渔业资源洄游分布图引用黄渤海区渔业资源调查与区划(农业部渔业 局编,海洋出版社,1990)中相关内容。

辽东湾内主要洄游性鱼类为黄渤海种群的暖温性鱼类,越冬场位于黄海中南部至东海北部的连青石、大沙、沙外及江外渔场。春、夏季鱼群大致分三路北上产卵洄游,各路的洄游模式特征是:一路向西偏北经长江口、吕泗外海进入山东南部日照近海产卵场产卵。秋季在海州湾、连青渔场索饵,入冬后返回越冬场;另一路向西北到达山东半岛以南近海产卵,产卵后即分布在附近海区索饵,直到

进行越冬洄游;第三路鱼群的洄游路线比较长,由越冬场直接北上到达成山头外海,然后分成2支,一支继续向北到鸭绿江口进行产卵,另一支则折向西,经烟威外海进入渤海,分别游向莱州湾、渤海湾及辽东湾等产卵场,入秋后又分别从各湾游出渤海,返回原越冬场。属于这一类群的鱼类主要是底层鱼类有小黄鱼、带鱼、黄姑鱼、蓝点马鲛、真鲷、黄鲫、青鳞、斑鰶、鳀鱼等。

从图 3.2.5-3 和 3.2.5-4 可以看出,本项目在辽东湾区域渔业"三场一道"范围内产卵场区域。

本项目开展底播开放式养殖,本项目养殖的贝类采取生态自然生长模式。第一,项目养殖不投饵或投药,养殖人员产生的生活污水和船舶含油污水均按照相关规定统一收集至陆地处理,因此不会向海域中投放污染,对区域水质、沉积物等环境影响较小;第二,项目开展底播开放式养殖,不建设任何水工构筑物,不会阻碍渔业资源洄游通道;第三,项目养殖品种为文蛤,属于当地原有底栖贝类品种,不是上述保护物种的天敌;第四,项目采捕期会对底质造成一定的扰动,引起的悬浮物影响范围主要在作业区周边,且随着采捕作业停止而消失,项目养殖的文蛤等贝类春秋两季均可采收,项目建设单位针对项目所在区位特点,制定了严格的采收计划,采收时间避开辽东湾区渔业产卵期4月25日~6月15日,同时控制采捕强度,选取生态采捕方式等,捕捞活动遵守《中华人民共和国渔业法》及有关法律的规定。在前述要求下,本项目对渔业资源"三场一通道"的影响较小。

项目实施能够增加区域贝类资源量,补充、修复原水体的水生生物链中缺失的种类,加强海洋生物物种多样性,保护水产种质资源,恢复区域重要的底栖性贝类资源,修复区域生态系统。

本着区域经济发展、渔业生态环境保护和渔业资源的可持续发展兼顾的目的,综合考虑以上因素,在科学开展增养殖的前提下,本项目对渔业生态环境和 渔业资源的影响是可以接受的。

4. 海域开发利用协调分析

4.1. 海域开发利用现状

4.1.1.社会经济概况

(1) 营口市

营口市位于辽东半岛西北部,大辽河入海口左岸。西临渤海辽东湾,与锦州、葫芦岛隔海相望;北与大洼、海城为邻;东与岫岩、庄河接壤;南与瓦房店、新金相连。地理坐标处于东经 121°56′至 123°02′,北纬 39°55′至 40°56′之间。市域南北最长处 111.8 公里,东西最宽处 50.7 公里。市域总面积 5401.8 平方公里,占辽宁省总面积的 4.88%;站前区和西市区面积 66.3 平方公里,鲅鱼圈区 66.4 平方公里,老边区 505.4 平方公里,大石桥市 1610 平方公里,盖州市3117 平方公里。

营口市位于渤海辽东湾东北岸,是辽东半岛上的沿海开放城市。中国八大水 系之一的大辽河在这里与渤海相交汇。营口市地势自东南向西北倾斜,自然形成 低山、丘陵、平原三种地貌类型。

营口市距离辽宁省省会城市沈阳 166 公里; 南同"北方明珠"大连市接壤, 距离 204 公里; 东北与中国"钢都"鞍山市相依; 东与中国最大的边境城市丹东 市毗邻; 北与辽河油田属地盘锦市隔河相望, 区域位置十分优越。

营口的水陆空交通便利。哈大高铁、长大铁路、沈大高速公路、哈大公路(202 国道)、庄林公路(305 国道)纵贯南北;大营铁路、营大公路、盖岫公路连接东西, 交通十分方便。营口港(包括鲅鱼圈港区和老港区)为全国 19 个主枢纽港之一。 市域内有两条跨市输油管道通向营口港(鲅鱼圈区),有一条跨省输油管道经过境 内。

营口市属暖温带半湿润气候区,四季分明,气候适宜,土质肥沃,水域面积及林地面积广阔,盛产水稻、水果及水产品,素有"鱼米之乡"、"水果之乡"的美称。

营口市得天独厚的区域环境,成为中外客商关注的地区。1992年,营口市 跨入全国投资硬环境 40 优行列。联合国开发计划署营口考察团曾在考察报告书

中评价: "中国最具资源优势的海港城市当首推营口"。近年来,营口市先后被评为中国投资硬环境 40 优城市、中国最具发展潜力的十个城市之一、中国金融生态城市、中国优秀旅游城市和中国最佳休闲旅游城市。

根据《2024年营口市国民经济和社会发展统计公报》,2024年,全年地区生产总值1560.3亿元,比上年增长5.1%。其中,第一产业增加值121.0亿元,比上年增长4.6%;第二产业增加值528.4亿元,增长2.8%;第三产业增加值910.9亿元,增长6.5%。第一产业增加值占地区生产总值比重为7.8%,第二产业增加值比重为33.9%,第三产业增加值比重为58.4%。全年人均地区生产总值69223元,比上年增长6.2%。

全年水产品产量(不含远洋渔业)56.4 万吨, 其中, 海洋捕捞 4.5 万吨, 海水养殖 38.8 万吨; 淡水养殖 13.1 万吨。

(2) 盖州市

盖州市地处辽宁省南部,辽东半岛的西北偏中部,渤海东岸,辽河平原区和辽南丘陵区的交界处。位于北纬 39°55′12″至40°33′55″,东经 121°5′44″至 122°53′26″,东西最大横距 80 公里,南北最大纵距 70 公里。盖州市全市总面积 2,930 平方公里,辖 27 个乡镇、办事处,总人口 73 万人。有海岸线 42 公里,独具一市连四港之利,是东北地区最近的出海口。中长电气化铁路、哈大铁路客运专线、沈大高速公路、盖庄高速公路、哈大公路、辽宁省滨海路、庄林路纵贯全境,从盖州驱车 1 小时,即可到达大连周水子和沈阳桃仙机场,已经投入运营的营口机场紧邻盖州。

根据《盖州市第八届人民代表大会第四次会议 政府工作报告(2024)》,2024年,地区生产总值增长 3.7%;规模以上工业总产值下降 30%;规模以上工业增加值下降 14%;固定资产投资增长 9.4%;社会消费品零售总额增长 8%;货物贸易进出口总额完成 24.1 亿元,增长 6.1%;一般公共预算收入完成 13.2 亿元,其中,税收收入完成 9.6 亿元,增长 5.4%;农村常住居民人均可支配收入增长与经济增长同步。

4.1.2. 海域使用现状

本项目位于鲅鱼圈望海街道西侧浅海海域,项目所在区域海域开发利用主要

为开放式养殖用海、围海养殖等。
项目所在海域开发利用现状见图 4.1-1。

(1) 渔港

营口盖州市渔港主要包括项目区东侧的西河口渔港、沙河入海口北侧的光辉 渔港、营口鲅鱼圈望海寨渔港(海星渔港)、田崴子渔港以及仙人岛渔港和浮渡 河口处白沙湾渔港,其中望海寨渔港为辽宁省一级渔港。本项目距离周边渔港均 较远,距离最近的为东南侧约 7.3km 处的望海寨渔港。

(2) 海水养殖业

本项目周边海水养殖业主要为开放式养殖及围海养殖。

开放式底播养殖区主要分布于项目临近东北侧,底播养殖主要以贝类养殖为 主,围海养殖主要分布在近岸区,养殖品种以海参为主。

盖州市海水养殖总面积 6082 公顷,包括池塘养殖面积 967 公顷,底播养殖面积 5115 公顷。此外还有工厂化育苗及养殖 35 万立方水体。海水养殖总产量 157079 吨,主要养殖品种有菲律宾蛤仔、毛蚶、缢蛏、海蜇、中国明对虾、凡纳滨对虾、刺参、大菱鲆等。其中,鱼类产量 200 吨,主要为工厂化养殖;甲壳类养殖面积 387 公顷,产量 3040 吨;贝类养殖面积 4994 公顷,产量 151739 吨;刺参养殖面积 182 公顷,产量 100 吨;海蜇养殖面积 519 公顷,产量 2000 吨。

4.1.3. 海域权属现状

本项目周边 5km 范围内主要为已确权的开放式养殖用海项目。本项目周边邻近用海权属见图 4.1-5 和表 4.1-4。

4.2. 项目用海对周边海域开发活动的影响

本项目利用海洋开展自然生态底播养殖,不建设任何工程及养殖生产设施。通过现场踏勘、调研、卫星遥感图,项目周边主要海洋开发活动均距离较远,在 5km 以上(见图 4.1-1),项目周边 5km 范围内主要海洋开发活动为周边已确权的开放式养殖及围海养殖项目。

由于本项目为开放式底播养殖,采用天然生长模式,不涉及海洋工程建设, 无新增污染源,因此,对周边海洋环境无不利影响。

项目拟选址区不是周边渔民传统捕捞区,项目利用海床开展底播养殖,不限制其他渔船水面通航,因此对捕捞渔业影响较小。

(1) 对周边开放式养殖项目的影响分析

根据项目所在海域前期权属调查及现场踏勘,该区域目前尚无其他确权用海项目,本项目拟出让海域与其他用海项目无界址重叠,不会产生界址纠纷。本次待出让海域均为底播养殖,本项目及邻近本项目的其他已确权海域养殖品种均为菲律宾蛤仔、文蛤等底栖性贝类,捕捞作业均采取船拖耙的捕捞方式,控制捕捞强度及捕捞作业范围,项目与周边其他已确权开放式养殖项目预留渔船通航通道,不会对周边已确权开放式养殖项目造成直接不利影响。

(2) 对传统捕捞作业的影响分析

近年来过度捕捞已导致近海渔场的衰退,近海捕捞渔业已相对减少,辽宁沿海经济带高质量发展规划和辽宁"十四五"规划等规划均提出要促进海洋渔业向水产健康养殖、现代海洋牧场、远洋捕捞业转型。而本项目的建设在一定程度上能够控制近海捕捞强度,开放式底播养殖也有利于近海渔业资源量的增加。本项目开放式底播养殖不改变海域属性,不建设养殖设施等,不会阻碍和限制渔船水面通行,也不限制周边除底拖网外的其他定制网具捕捞活动,因此对周边传统捕捞作业的影响较小。

(3) 对周边围海养殖的影响分析

本项目严格限制在拟确权区进行养殖活动,不占用围海养殖池塘水域;项目 采取不投药不投饵的养殖模式,对区域水质生态影响较小,不影响围海养殖上水 水质条件;项目底播养殖不建设阻碍潮流的设施,不影响围海养殖区上下水条件。 因此,对围海养殖无直接不利影响。

4.3. 利益相关者界定及协调

4.3.1.利益相关者界定

根据《海域使用论证技术导则》,利益相关者指受到项目用海影响而产生直接利益关系的单位和个人。界定的利益相关者应该是与项目存在直接利害关系的个人、企事业单位或其他组织或团体。通过对本项目周围用海现状的调查,分析项目用海对周边开发活动的影响情况,按照利益相关者的界定原则,来界定本项目的利益相关者。

通过现场踏勘和权属调查,项目界址范围内无其他用海项目,不存在界址纠

纷。经过调查,项目周边主要为开放式养殖。

- (1)对周边已确权开放式养殖项目:本项目周边已确权开放式养殖距离项目预留足够渔船通航通道,项目实施不会对周边开放式养殖造成影响,因此不将周边开放式养殖界定为本项目利益相关者。
- (2)对周边传统捕捞渔业:经调查及咨询盖州市相关渔业部门,本项目拟选用海区不是盖州市定制网具等的习惯捕捞点,不属于传统捕捞区。本项目是在相关规划指导下开展的,本项目开放式底播养殖不改变海域属性,不建设养殖设施等,不会阻碍和限制渔船水面通行,也不限制周边除底拖网外的其他定制网具捕捞活动,项目出让海域单位在海域出让后承担监督和协调责任,项目与捕捞渔业之间的相互影响可以降到最低,因此不将其列为本项目利益相关者。
- (3) 对周边围海养殖:项目实施不影响区域水质生态条件、不影响围海池塘上下水条件,对围海养殖无直接不利影响。

综上,本项目用海无利益相关者。

4.3.2.需要协调的部门

根据《水产种质资源保护区管理暂行办法》,本项目为开放式底播养殖,不属于管理办法禁止开展的围填海、新建排污口等,也不属于水利工程、疏浚航道、建闸筑坝、勘探和开采矿产资源、港口建设等工程建设。

本项目位于辽东湾国家级水产种质资源保护区实验区内,该区域主要保护目标为渔业资源,本项目通过贝类底播养殖,在严格苗种检疫、控制投苗密度等措施基础上,有利于区域贝类生物资源量的恢复,有利于以贝类为食的其他渔业资源的富集,与保护区保护目标不冲突,对保护区的不利影响较小。

因此,不将保护区主管部门界定为利益协调部门。

4.3.3.利益相关者协调分析

经界定,本项目无利益相关者,无需要协调的部门。

4.4. 项目用海对国防安全和国家海洋权益的影响分析

4.4.1. 与国防安全和军事活动的协调性分析

本项目是在相关规划的指导下进行的,本项目用海区域内没有国防安全及军事设施,项目建设海域没有军事机密或军事禁区,项目用海不会对国防安全产生影响。

4.4.2. 与国家海洋权益的协调性分析

本项目用海不涉及领海基点,不涉及国家秘密等。

海域属国家所有,单位和个人经营性使用海域,必须按规定交纳海域使用金。 本项目用海将严格按国家有关规定缴纳使用金,国家权益可以得到保障。因此, 不存在损害国家权益的问题。

综上所述,本项目用海不会对国防安全和国家海洋权益产生影响。

5. 国土空间规划符合性分析

5.1. 所在海域国土空间规划分区基本情况

5.1.1.省级国土空间规划

《辽宁省国土空间规划(2021-2035年)》不划定海洋功能分区,只确定海洋生态空间和海洋开发利用空间,以及在海洋生态空间内划定海洋生态保护红线。根据省级国土空间规划划定的海域"两空间内部一红线"(海洋生态空间、海洋开发利用空间,海洋生态空间内部划定生态保护红线),本项目用海不占用生态空间,位于海洋开发利用空间内。

规划第七章 优化海洋保护开发格局,大力发展海洋经济指出: "统筹管理海洋开发利用空间 统筹安排行业用海。优先保障国防安全、海上交通运输及国家重大项目用海。保障现代渔业发展、渔港建设和渔民生产生活的用海需求,按照禁止养殖区、限制养殖区和生态保护红线的管控要求,规范海水养殖布局,稳定海水健康养殖面积。.....。引导海域开发利用走向深远海,推进大连、营口、盘锦、葫芦岛等地养殖区逐步从近岸内湾向深水海域发展,重点建设黄海北部和辽东湾现代化、规模化海洋牧场。"

5.1.2.市级国土空间规划

(1) 《营口市国土空间总体规划(2021-2035年)》

根据《营口市国土空间总体规划(2021-2035年)》,保护利用海洋空间 围绕海洋资源保护利用和海洋生态环境改善,总体统筹海域与海岸线开发保护活动,推动海洋开发利用从数量规模向质量效益转变,有力支撑营口建设海洋强市。优化海洋空间格局:基于"两空间一红线"总体格局,划定八类海洋功能分区加强陆海保护修复;构建"山一廊一海"贯通的陆海生态网络;消除潜在冲突,加强海岸带陆海两侧功能衔接。调整海洋产业布局:协同大连、盘锦、支撑全省西向轴带海洋经济发展;推动海洋产业发展,做强做大海洋物流运输业、海洋渔业、大力发展临港产业、滨海旅游业;优化海洋经济空间布局,以营口港为核心发展临港经济,推动老边、盖州提升海洋渔业经济、依托优质资源发展滨海旅游经济。

项目所在的功能分区及其周边功能分区情况如图5.1-3所示,本项目位于渔业用海区,周边功能区主要是生态保护区。

(2) 《盖州市国土空间总体规划(2021-2035年)》

根据《盖州市国土空间总体规划(2021-2035年)》提出: "优化利用海洋空间。维护海洋生态结构与功能完整, 优化调整开发空间, 保障各类用海需求。

保障海洋经济发展必要空间:提升盖州市的海域功能,保障海洋战略性新兴产业、海洋生态旅游、海洋渔业、海洋文化等多元化空间需求。统筹海岸线两侧空间功能及用途,合理预留多式联运等配套空间,提升集约高效用地用海水平。

推进农渔业空间发展:重点支持国家级海洋牧场,保障渔港的新建扩建工程。 推动海水养殖绿色发展,合理确定增养殖容量,防止对海洋环境造成污染。大力 发展设施农业和农产品、海产品精深加工,建设农业示范基地、农产品研发及新 产品、新品种推广基地,形成集休闲观光、绿色生态、科教研发于一体的现代高 效农渔业开发中心。推进仙人岛白沙湾等渔港建设,鼓励远洋捕捞业,根据渔业 资源的可捕量合理安排近海捕捞,严格控制渔场捕捞强度。根据捕捞量低于渔业 资源增长量的原则,实行捕捞限额制度,严格执行伏季休渔制度。加强渔业生态 环境的保护修复,采用增殖放流等措施养护海洋生物资源。"

本项目位于《盖州市国土空间总体规划(2021-2035年)》中的渔业用海区, 建设为开放式底播贝类海水生态健康养殖。

5.2. 对周边海域国土空间规划分区的影响分析

本项目位于渔业用海区,项目所在的渔业用海区周边功能分区主要为工矿通 信用海区、生态保护区和交通运输用海区。

本项目为开放式底播养殖,不涉及围填海及构筑物等工程建设内容,不改变海域自然属性,不占用岸线,不会和周边功能分区发生挤占岸线和海域空间的问题。同时项目采用天然养殖模式,不投放饵料和药物,无新增污染源,合理控制养殖规模,对海洋生态环境影响较小,不会影响周边生态保护区等的保护目标和生态功能,不影响周边功能区主导功能的发挥。

5.3. 项目用海与国土空间规划的符合性分析

5.3.1.项目用海与省级国土空间规划的符合性分析

本项目位于省级国土空间规划划定的海洋开发空间内,规划指出: "保障现代渔业发展、渔港建设和渔民生产生活的用海需求"。本项目开放式底播贝类养殖用海属典型的现代渔业用海,项目建设能够增加区域底栖性贝类资源量,增加生物多样性,有利于渔业资源的增加,进而带动区域经济持续健康发展,保障现代渔业发展。因此,本项目用海符合《辽宁省国土空间规划(2021-2035年)》要求。

5.3.2.项目用海与市级国土空间规划的符合性分析

- (1) 与所在的市级国土空间总体规划功能分区的符合性分析
- 1) 《营口市国土空间总体规划(2021-2035年)》

本项目位于渔业用海区,拟开展开放式底播贝类养殖,属于渔业用海中的开放式养殖用海,位于规划的渔业用海区内,符合该区主导功能定位要求。项目开放式底播养殖不会对所在功能区的生态环境等造成不利影响。本项目用海符合《营口市国土空间总体规划(2021-2035年)》的要求。

2) 《盖州市国土空间总体规划(2021-2035年)》

本工程位于渔业用海区,拟开展开放式底播贝类养殖,属于渔业用海,符合所在功能区的主导功能定位。项目底播养殖不改变海域自然属性,养殖期间采取生态健康绿色养殖模式,不投放饵料和药物,无新增污染源,同时合理控制养殖规模,防止对海洋环境造成污染。项目建设符合盖州市国土空间规划中"保障海洋渔业空间需求,推进农渔业空间发展,推动海水养殖绿色发展,合理确定增养殖容量,防止对海洋环境造成污染"等要求。因此,本项目用海符合《盖州市国土空间总体规划(2021-2035 年)》。

- (2) 与市级国土空间总体规划中"生态保护红线"的符合性分析
- "三区三线"是根据城镇空间、农业空间、生态空间三种类型的空间,分别对应划定的城镇开发边界、永久基本农田保护红线、生态保护红线三条控制线。

根据《营口市国土空间总体规划(2021-2035 年)》,本项目位于渔业用海区,不在永久基本农田保护红线和城镇开发边界线内。根据与生态保护红线的叠加图,详见图 5.3-1,项目不在划定的生态保护红线区内,界址紧邻"大辽河口

生态系统"生态保护红线区。

本项目建设为开放式底播养殖,项目不占用生态保护红线区。本项目不涉及 围填海及构筑物等工程建设内容,不改变海域自然属性,不涉及污染海洋环境、 破坏岸滩整洁、排放海洋垃圾、引发岸滩蚀退等损害公众健康、妨碍公众亲水活 动的开发活动,不占用自然岸线和海岸景观。运营期采用天然生长模式,不投放 任何饵料和药物,无污染物排海,通过科学管理,合理布局、严格控制投苗密度 和捕捞强度,对海洋环境影响有限,有利于区域渔业资源的恢复。因此项目用海 不会对周边生态保护红线区产生明显影响。

(3)与《营口市养殖水域滩涂规划(2018-2030年)》(修订版)的符合性 分析

根据《营口市养殖水域滩涂规划(2018-2030年)》(修订版):限制养殖区:规划限制养殖区面积为108794.15公顷,占养殖功能区划比例为48.96%,主要为工矿与通信用海区、生态红线一般区、海洋预留区、现状养殖区、生态控制区和自然保护地一般控制区、饮用水水源地二级保护区、主要河流行洪区、新增盐田区等。其中海上限制养殖区规划面积为52833.37公顷;陆地限制养殖区规划面积为55960.78公顷。

限制养殖区管理要求:限制养殖区内的水产养殖活动,严格落实污染防治措施,污染物排放超过国家和地方规定的污染物排放标准的,限期整改,整改后仍不达标的,由所在市县区级人民政府、先导区管委会及相关部门负责限期搬迁或关停。大辽河口附近限制养殖区建议开展底播养殖,要科学密殖,禁止投饵育肥,污染物按照国家和地方规定的污染物排放标准达标排放。

养殖区:规划养殖区面积为73947.54公顷,占养殖功能区划比例为33.28%,主要类型为海上渔业用海区、海水池塘、淡水池塘、水库、湖泊和水田。其中海上养殖区规划面积为58997.19公顷;陆地养殖区规划面积为14950.35公顷。海上养殖区:根据区域海面及海底底质条件、水流特点、饵料生物基础等打造底层海参贝类底播、中层藻礁、集鱼礁、上层陆地工厂化和海上网箱养鱼接力养殖,多生态位综合利用的立体生态养殖区域。底层主要底播菲律宾蛤仔、仿刺参、脉红螺等大型底栖动物,中层可设置人工藻礁增加初级生产力、改善水质、表层开展陆地工厂化养殖和海水网箱接力养殖。

建议养殖鲈鱼、红鳍东方鲀、大泷六线鱼、许氏平鮋等经济鱼类。

养殖区管理要求:大力推进水产生态健康养殖,科学控制养殖规模,养殖生产应符合《水产养殖质量安全管理规定》的有关要求。非法现状养殖履行合法化手续,探索立体化用海模式。鼓励发展"渔光互补"、"鱼游互补"、"渔风互补"等新兴海洋经济业态项目。完善全民所有养殖水域、滩涂使用审批,健全使用权的招、拍、挂等交易制度,推进集体所有养殖水域、滩涂承包经营权的确权工作,规范水域滩涂养殖发证登记工作。

使用用途管制:为保障现有水产养殖业和环境保护的协调统一,对于非 渔业用海区允许水产养殖活动兼容发展的功能区,严格限制改变海域的自然 属性。其中,生态保护区和生态控制区维持现状为主,禁止新增改变海洋自 然属性、区域水动力条件的水产养殖活动,科学控制养殖规模,污染物排放 达到国家和地方规定的污染物排放标准;工矿通信用海区限制养殖规模,海 水养殖不影响主导功能和国防安全、航运水道用海需求, 新建养殖用海需通 过充分的兼容性论证, 鼓励海上风电类用海区与海洋牧场兼容的用海方式; 游憩用海区允许开展底播养殖,在不改变海域自然属性、不影响主导功能前 提下鼓励兼容高端"渔游互补"混合业态用海;交通运输用海区维持现状, 禁止新建养殖设施, 控制海水养殖用海功能; 海洋预留区维持现状功能为主, 养殖用海需通过充分的可行性和兼容性论证,允许高端渔业用海,并控制开 发利用强度。渔业用海区内,渔业基础设施区禁止开展水产养殖活动,捕捞 区在主体功能未利用的情况下, 可开展底播养殖, 深远海鼓励发展深水网箱、 养殖工船等新兴养殖模式。航路周边海域限制养殖方式,仅允许开展底播养 **殖、禁止围填海、浮筏和网箱养殖。**切实协调好与项目用海利益相关者关系, 尤其要做好涉及渔业用海的渔民转产转业和补偿工作,维护渔民利益和渔区 和谐稳定。保护区范围内现有水产养殖业按其管理办法管理。规划养殖用海 中涉及到港口、锚地、航道航路等水域,按交通局、海事局的相关规定、规 划执行。

根据本项目与营口市养殖水域滩涂规划分区图-养殖区的叠加图(图 5.4-1),可以看出,本项目位于规划的养殖区范围内,项目为开放式底播养殖用海,养殖期采取生态健康养殖模式,科学控制养殖规模,符合养殖区管控要求。

综上,本项目用海符合	《营口市养殖水域滩涂规划	(2018-2030年)》	(修
订版)相关要求。			

6. 项目用海合理性分析

6.1. 用海选址合理性分析

6.1.1. 区域社会条件适应性分析

由于沿海工业和旅游业的发展使得项目周边的许多农民和渔民离开了原有的工作环境,就业压力是老百姓面临的主要问题。项目的建设将吸纳部分当地群众从事牧场增养殖的工作,为他们提供熟悉的工作环境和良好的工资福利,对促进社会和谐有着积极的作用。

区域内有十分便捷的陆、海、空交通网络,港口、机场、火车站、高速公路,交通十分便利。同时,盖州市沿海地区与养殖活动运营相关的渔港较多。附近有良好的渔港条件,为项目后续的运营管理提供了便利。

项目周边各类海水增养殖和相关产业发展比较成熟,已经形成了规模庞大的 池塘养殖、滩涂增养殖、育苗育种、保鲜加工、批发运输等产业链条。贝类增养 殖是盖州市一大特色渔业产业,积累了丰富的贝类增养殖经验,为项目的顺利运 行提供良好的产业基础条件和经验。

项目采取开放式底播养殖的方式,对环境影响较小,且对于生态环境和渔业资源的恢复和提高有一定的促进作用。通过项目与周边其他用海活动的影响分析,项目与周边用海活动相协调适应。

因此,项目选址符合区域发展,符合经济发展计划,项目的建设与当地群众的认识、习惯不相冲突,对社会环境和经济效益无不利影响。

6.1.2. 选址区域自然资源、环境适宜性

本项目养殖品种为以菲律宾蛤仔为主的贝类,贝类底播增养殖对于养殖环境 和条件都有一定的要求。

根据辽宁省地方标准《菲律宾蛤仔浅海底播增殖技术规范》(DB21/T3135-2019): "项目底播增殖选址海区应为远离污染源、潮流畅通,饵料丰富,水深1m~30m的浅海区域。海底地势平坦,底质无污染,含沙量50%~90%。水质符合NY5052的规定。"本项目选址于营口盖州北部侧浅海海域,该区潮流

畅通、饵料丰富,无污染源。滩面平坦宽阔,水深在-5m左右;本项目区底质类型以砂-粉砂-粘土为主,含沙量大于50%,符合菲律宾蛤仔浅海底播增养殖的要求;海底地形平缓,地貌以近岸浅滩地貌为主。项目区水动力条件适合海洋底栖贝类繁育、生长,且西北侧有大辽河、大清河等多条河流入海,淡水河流带入大量营养物质,是底栖生物良好的栖息繁衍地和繁育场。同时根据区域现状调查,水质除无机氮和活性磷酸盐外,均符合二类海水水质标准,符合《无公害食品海水养殖用水水质》(NY5052-2001)的海水养殖水质要求,无机氮和活性磷酸盐含量超标,说明该区水质中营养物质较丰富;沉积物符合一类沉积物质量标准,底质无污染。从场地选择来看,适宜菲律宾蛤仔的底播增养殖。

综上,本项目选址区符合菲律宾蛤仔等贝类的底播增养殖海域条件,是十分 理想的增养殖场址。

根据前述对项目所属区域海域自然条件、资源条件调查,以及近年来盖州市及周边地区底播增养殖贝类的实践经验,项目区域发展开放式底播增养殖贝类与其自然条件是十分吻合的。项目采取开放式底播养殖方式,采取绿色生态健康养殖模式,不改变海域自然属性,对环境影响较小。一方面自然条件能保障生产的需要,另一方面项目的建设有利于进一步改善海域的生态环境、修复渔业资源。

6.1.3.项目用海是否存在潜在的、重大的安全和环境风险

因此,本项目选址与自然资源和生态环境适宜性。

本项目为开放式养殖用海,底播养殖贝类,采取绿色生态健康养殖模式,不 投放饵料和任何药物,无新增污染源。项目不涉及围填海等工程建设,不改变海 域自然属性。运营期主要活动为苗种投放和采捕,养殖渔船规模较小,船舶装载 燃料油远小于临界量,不存在重大危险源。在严格规范渔船操作和航行的前提下, 可避免发生船舶风险事故。因此,本项目用海不存在重大的安全和环境风险。

6.1.4. 项目用海与周边其他用海活动是否存在功能冲突

本项目位于规划的养殖区内,属于规划划定的渔业用海区,按照营口市国土空间规划级养殖水域滩涂规划等相关规划要求建设。目前项目周边确权项目均为 开放式底播养殖项目,且距离均较远,本次待出让的其他海域均为开放式底播养 殖项目,不存在功能冲突。

6.1.5. 项目用海是否有利于海洋产业协调发展

盖州市乃至营口市拥有众多渔船和渔港等基础设施,相关增养殖产业发展也比较活跃,海洋渔业也是营口市重要的产业构成,是地方经济和社会就业的重要依托。近年来,随着国家海洋、环境等政策的调整,交通运输围填海、养殖围海、设施渔业用海、旅游围填海等受到较大的限制,迫切需要营口市的海洋产业向生态、可持续产业转移调整。项目发展底播增殖,不产生任何环境污染,有利于改善区域的渔业资源和海洋生态,对于促进和带动营口市渔业产业的转型升级,将起到一定的积极示范作用。

综上所述, 本项目用海选址是合理的。

6.2. 用海平面布置合理性分析

本项目为开放式养殖用海,开展底播养殖,不涉及任何围填海、构筑物和固 定设施建设。

开放式养殖平面布置无特殊要求,区域规则且便于增殖管理即可。项目界址的确定依据了项目所在海域的水质、底质、水动力及地形条件等进行选取,避免了与周边已确权、拟确权及划定的生态保护红线区域重叠和冲突,最终确定本项目界址范围。项目根据海域自然条件并结合周边开发利用现状,本着集约、高效用海的原则进行了平面布局。本项目周边邻近区尚无其他确权开发项目,在保障同期规划拟出让用海及其他拟申请用海界址不重叠的前提下,项目平面布置与周边其他用海活动是相适宜的。

因此, 本项目平面布置是合理的。

6.3. 用海方式合理性分析

根据本项目用海性质及用途,按照《海籍调查规范》和《海域使用分类》的 界定,本项目用海方式为开放式养殖。根据《国土空间调查、规划、用途管制用 地用海分类指南》,本项目属于"18 渔业用海"中的"1802 增养殖用海"。

本项目采用开放式底播养殖用海方式,不涉及围填海、构筑物、固定设施的

建设,不改变海域自然属性,符合开放式用海原则。开放式底播养殖位于浅海海域,不占用自然岸线。因此本项目建设有利于维护海域基本功能,能够最大程度的减少对水动力环境、冲淤环境的影响,同时也有利于保持自然岸线和海域自然属性。

本项目用海方式是根据区域自然条件,周边养殖习惯等选择的,同时符合国土空间规划,发展目标与当地养殖水域滩涂规划相一致,符合产业指导政策。项目可促进海域的合理、充分开发利用,丰富海洋生物资源,增加海洋生物资源量,有利于保护和保全海域生态系统。项目进行底播贝类养殖,菲律宾蛤仔等贝类的滤食作用有利于水体净化,防止赤潮发生,同时通过贝类底播能够恢复区域贝类底栖生物资源,有利于区域生态环境的恢复和保护。

综上,本项目用海方式是合理的。

6.4. 占用岸线合理性分析

本项目不占用海岸线,距离岸线约3.9km。

6.5. 用海面积合理性分析

6.5.1.项目用海申请情况

本项目申请用海面积 167.6820 公顷。

根据《海域使用分类》(HY/T123-2009),用海类型为渔业用海中的开放式养殖用海(编号: 13),用海方式为开放式中的开放式养殖(编号: 41)。

根据《国土空间调查、规划、用途管制用地用海分类指南》,本项目属于"18 渔业用海"中的"1802 增养殖用海"。

占用空间层位为海床。

本项目申请用海期限为15年。

6.5.2. 用海面积是否满足项目用海需求

项目实施底播养殖等自然的养殖模式,需要一定固定的水域,并具有排他性,从用海方式上来说,需要申请一定面积的海域。

从本项目出让方式来看,本项目采取市场化招拍挂的方式出让,也需要考虑

潜在投资人的成本投入,养殖用海面积过大或过小,都不利于养殖企业合理的成本投入及获取预期的经济效益,从而限制养殖用海市场化配置的推进,不利于相关政策的实施。

同时,项目成本也是控制养殖面积的重要因素之一,根据行业及周边区域相关养殖经验,养殖区域成本约 0.2 万元/亩,收益约 0.3 万元/亩,项目申请用海面积 167.6820 公顷,总投资约 450 万元,可增加年收益 750 万元。

综上所述,本项目用海面积有利于市场化配置出让养殖用海工作的开展,在海域出让后能够满足获取出让海域的养殖企业的用海需求。

6.5.3. 用海面积合理性分析

本项目宗海界址图的测绘由辽宁研海生态科技有限公司承担完成,该单位具备测绘乙级资质,证书编号:乙测资字21507148,业务范围包括工程测量、海洋测绘、界线与不动产测绘。

1、测量方法

本项目宗海范围通过测绘单位对项目实际界址点勘测及收集到的周边申请 及批复海域使用确权界址点情况,绘制整理宗海界址图。

- 2、宗海图的绘图方法
- ① 宗海界址图的绘制方法

利用建设单位提供的界址点,在 CAD 界面下,形成以地形图为底图,以项目用海界线形成不同颜色区分的用海区域。

② 宗海位置图的绘制方法

宗海位置图采用当地海图,CGCS2000 坐标系,将上述图件作为宗海位置图的底图,将用海位置叠加至上述图件中,并填上《海籍调查规范》和《宗海图编绘技术规范》上要求的其他海籍要素,形成宗海位置图。

③ 宗海界址点的确定方法

根据《海域使用分类》(HY/T 123-2009)对海域使用的分类,本项目用海属于开放式养殖用海项目。项目用海坐标的界定主要是依据 GPS 实地测量、现场勘查指界以及周边项目海域使用权证材料; 宗海界址线根据《海籍调查规范》中以下原则确定:

"5.4.1.3 开放式养殖用海

开放式养殖用海包括以下用海方式,其界址界定方法为:

- a) 筏式和网箱养殖用海。
- b)无人工设施的海底人工投苗或自然增殖生产用海,以实际设计或使用的范围为界。

根据以上原则,本项目用海为采取招拍挂方式出让的无人工设施的底播自然增殖用海,在出让海域时统一规划布局,均选取在渔业用海区内,规划的每块出让海域面积除考虑成本控制外,还需与周边规划未确权项目、已确权项目、待批准及同期待出让用海项目界址不重叠,不占用航道水域,同时符合养殖水域滩涂规划的要求,避免进入禁止养殖区范围。

项目界址线界定分析见表 6.5-1。

用海单元	界址点编号	确定方法	示意图
2号养殖用海	5-6-1-2-3-4	以生态红线 区划定边界	
		为界	
	4-5	根据后续其	
		他规划项目	
		为界	

表 6.5-1 项目界址线界定分析一览表

综上,项目依据所在海域开发利用情况及养殖水域滩涂规划要求,并结合成本控制等因素确定项目各向界址,满足"以实际设计或使用的范围为界"界定界址的原则。

- 3、宗海图界址点坐标及面积计算方法
- ① 宗海界址点坐标的计算方法

根据数字化宗海界址图上所载的界址点平面坐标,利用相关测量专业的坐标换算软件,将各界址点的平面坐标换算成以高斯投影 122°00′为中央子午线的大地坐标。

② 宗海面积的计算方法

根据《海籍调查规范》,本次宗海面积计算采用坐标解析法进行面积计算,即利用已有的各点平面坐标计算面积。借助于 CAD 的软件计算功能直接求得用海面积。

③ 宗海面积计算结果

根据《海籍调查规范》的要求,本次申请用海面积为 167.6820 公顷。项目 宗海位置图和宗海界址图见图 6.5-1、图 6.5-2。

6.6. 用海期限合理性分析

本项目申请用海年限为15年。

根据《中华人民共和国海域使用管理法》第二十五条规定,养殖用海海域使用权最高期限为15年。从法律的角度考虑,本项目申请用海期限符合养殖用海海域使用权最高期限要求是合理的。

从养殖收益合理性角度考虑,项目开展贝类养殖,养殖周期通常在一年以上, 且成蛤率达到75%左右,在养殖过程中,需持续投入苗种、设备维修等其他费用, 收益的实现需要通过多轮养殖周期的积累。若用海期限过短,可能导致用海人难 以在完整的生产周期内收回成本并实现合理利润。申请15年使用权,既能覆盖 多个连续养殖周期,保障养殖生产的持续性和稳定性,也能为项目预留足够时间 平衡成本与收益,符合贝类养殖的产业规律和经济特性。

综上,本项目申请用海期限是合理的。申请用海期限结束后,如需继续用海, 应办理续期申请。

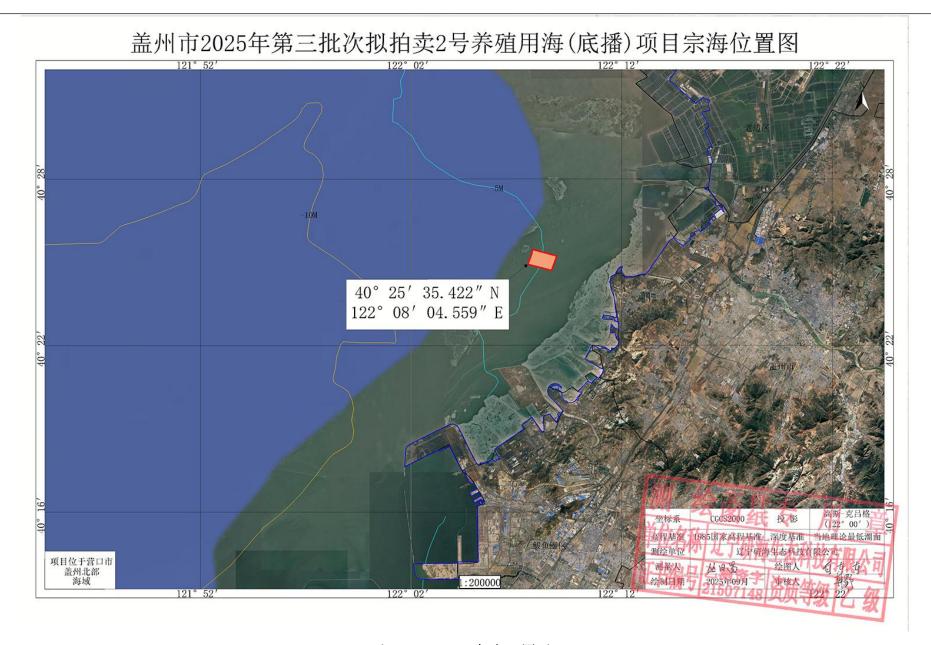
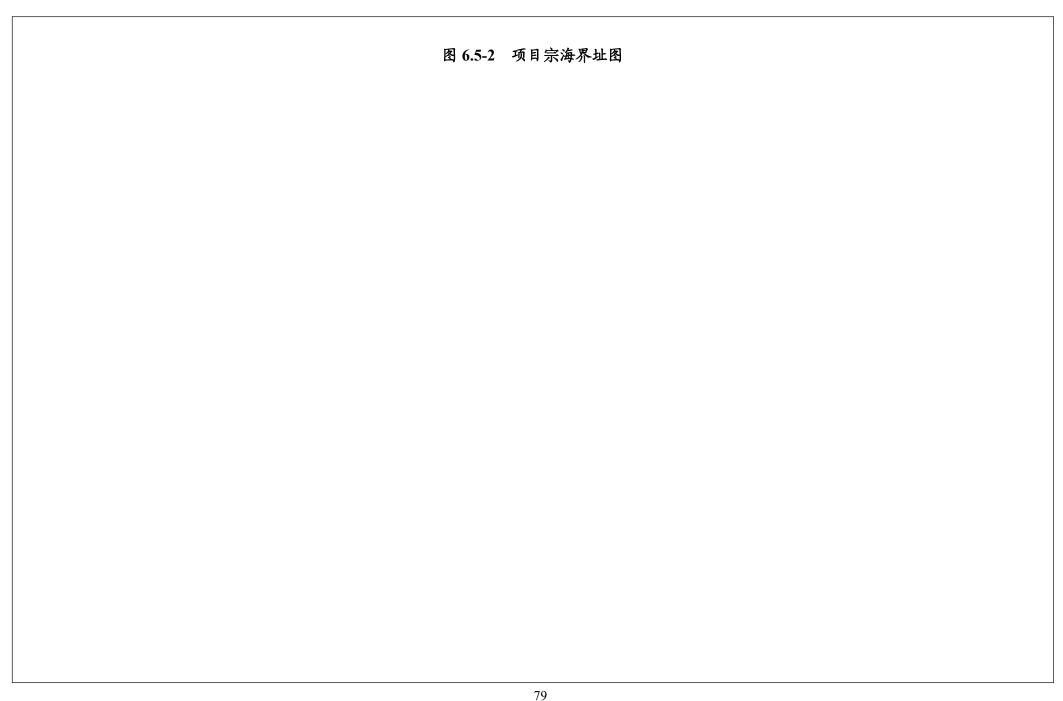



图 6.5-1 项目宗海位置图

盖州市2025年第三批次拟拍卖2号养殖用海(底播)项目立体分层设权示意图

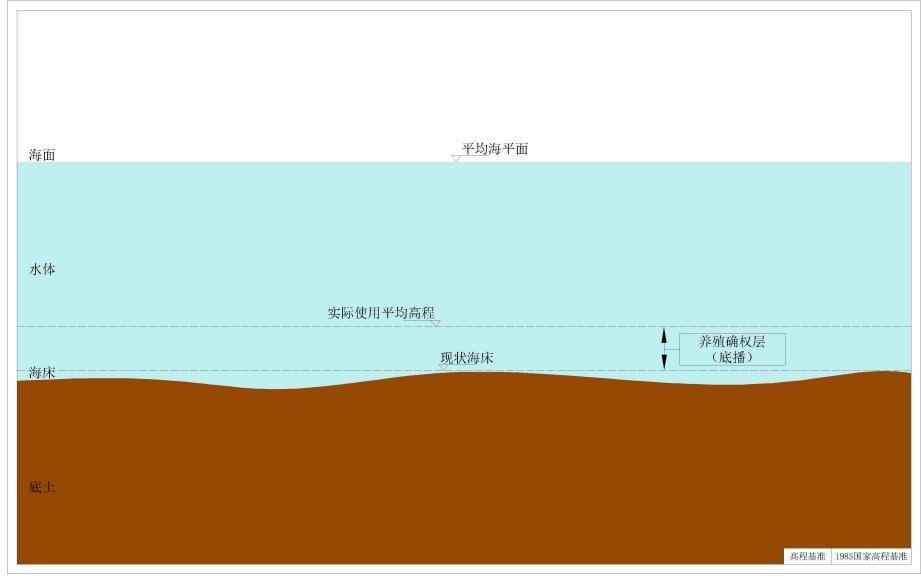


图 6.5-3 本项目立体设权示意图

7. 生态用海对策措施

7.1. 生态用海对策

7.1.1.海洋生态环境保护措施

(1) 严格执行生态增殖措施

本项目为底播养殖,采取开放式用海方式,通过底播养殖贝类,有利于增加 区域底栖生物资源。依托于区域优越的自然条件和多年贝类增养殖经验等,项目 从苗种的选择、管理、捕捞等各环节严格操作,坚持生态优先。

- ①项目苗种的选择必须严格依照国家有关水生生物增养殖的政策实施,严格执行各类国家、行业和地方标准,苗种质量必须开展检测,应符合 SC/T 2034 的要求,药物残留限量按 NY 5070 要求执行,接受渔业部门监督监管。
- ②项目必须严格控制苗种投放密度,确保投放密度低于相关标准要求,符合环境容量要求。项目必须采取生态化的健康养殖模式,充分利用海水的自净能力,保证了养殖贝类的安全和质量,采取不给饵、不投药的底播自然养殖方式,保障贝类在自然环境中自然生长。
- ③项目捕捞期采取渔船拖耙的捕捞方式,采取先进科学捕捞方式,严格控制捕捞强度,从而减少对底质的扰动程度,减少对区域底栖生态和水质的影响。
 - (2) 加强生态环境跟踪监测

项目定期开展对海洋生态等监测,重点监测底栖生物、生物体质量等,开展科学的评估。

7.1.2. 污染物排放与控制

本项目为开放式底播养殖项目,不涉及工程施工,产生废物主要为投苗及捕捞期渔用船舶垃圾等。渔船产生的废水及固废统一收集后交由有资质单位处理, 严禁排海。

7.2. 生态保护修复措施

项目建设不涉及围填海、非诱水构筑物等严重改变海域自然属性的用海工

程,项目采取开放式底播养殖方式,亦不涉及核电、石化、油气等用海类型。			
通过前述章节分析,项目建设对周边海域生态环境影响较小,且可与周边产			
业协同发展。			
项目建设不占用岸线,不涉及永久改变海域自然属性的工程,在前述生态保			
护措施的基础上,可尽可能减小对生态环境的影响程度,因此无需进行岸线、生			
物资源、湿地恢复等修复工程。			

8. 结论

(1) 项目用海基本情况

本项目位于营口鲅鱼圈望海街道西侧浅海海域,拟出让海域进行开放式底播 养殖,养殖品种以菲律宾蛤仔为主,兼具文蛤、四角蛤蜊等贝类。

本项目用海类型为渔业用海中的开放式养殖用海,用海方式为开放式用海中的开放式养殖,项目拟出让海域面积为167.6820公顷,申请用海期限为15年。项目不占用岸线,距离岸线约3.9km。

(2) 项目用海必要性结论

项目建设项目的建设符合国家海洋产业政策,有利于促进地区海洋经济发展,是盖州市水产养殖业可持续发展的需要,有利于满足海产品市场日益迫切的需求,增加海洋碳汇及促进传统渔民的转产和增收,维护社会和谐稳定。项目用海符合相关区域发展规划,符合相关产业发展计划,符合科学利用海洋资源的要求,项目用海是必要的。

(3) 项目用海资源环境影响分析结论

本工程位于鲅鱼圈望海街道西侧浅海海域,项目建设不涉及围填海及构筑物等工程建设,不改变海域自然属性,因此项目建设不会对海洋水动力环境、冲淤环境造成影响。养殖期间采取生态健康养殖模式,不投饵也不投放任何药物,无新增污染源,项目采取渔船拖耙采捕的方式,产生的悬浮物扩散影响较小,且随着采捕作业的停止而消失,不会对区域水质、生态环境等造成长久的不利影响。且项目底播养殖贝类,通过贝类滤食作用有利于水质的改善,有利于海洋资源特别是渔业资源的恢复,有利于海洋生态系统的健康。

(4)海域开发利用协调分析结论

经界定,本项目无利益相关者。本项目位于国土空间规划的渔业用海区,项目与相邻产业的用海性质相同,在当地行政主管部门及相关部门的指导下,确定用海范围,可与周边产业协调好界址关系,减少利益冲突。

(5) 项目用海与国土空间规划的符合性分析结论

项目位于《营口市国土空间总体规划(2021-2035年)》中的"渔业用海区",不占用自然保护地和生态保护红线,符合国土空间规划对该区的主导功能定位和

管控要求。

(6) 项目用海合理性分析结论

本项目用海选址具有较好的区位优势,选址与区域的自然资源、环境条件和 社会条件相适宜,选址与区域生态系统、周边其他用海活动相适宜。因此,本项 目用海选址是合理的。

项目开放式底播养殖用海方式是结合当地的海洋资源环境条件及成熟的经验技术条件下选择的,不改变海域自然属性,有利于维护区域水动力环境、冲淤环境和生态环境,因此项目用海方式是合理的。

本项目用海面积符合海洋牧场的开发习惯,以及当地市场的接受程度,对养殖户产生的经济压力较小,与生产能力相适宜,经济合理,用海面积能够满足项目用海需求,项目用海面积合理。

本项目用海期限依据相关规划及法定养殖用海海域使用权最高期限确定,申请用海期限合理。

(7) 项目用海可行性结论

综合前述各项分析结果,本项目用海是可行的。